共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface structure and surface mechanical properties of low‐ and high‐density polyethylene were characterized by atomic force microscopy (AFM) as the polymers were stretched. The surfaces of both materials roughened as they were stretched. The roughening effect is attributed to deformation of nodular structures, related to bulk spherulites, at the surface. The surface‐roughening effect is completely reversible at tensile strains in the elastic regime and partially reversible at tensile strains in the plastic regime until the polymers are irreversibly drawn into fibers. AFM force versus distance interaction curves, used to measure changes in the stiffness of the surface and the surface elastic modulus as a function of elongation, show that the surfaces become softer as the polymers are drawn into fibers at high strains. At low elastic strains, however, the surface elastic modulus of HDPE increases—attributed to elastic energy stored by the amorphous regions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2263–2274, 2001 相似文献
2.
Zhijun Chen Jie Cai Leyang Zhang Yun Liu Xiqun Jiang Changzheng Yang 《Journal of Polymer Science.Polymer Physics》2005,43(11):1332-1343
Copolymers of styrene and 4‐vinylpyridine with a styrene fraction f varying from 1 to 0 were grafted onto a silicon substrate in the melt. The grafting reaction and the stability of the grafted chains were investigated by Fourier transform infrared and X‐ray photoelectron spectroscopy. The thickness and surface morphology of the grafted copolymer layers were characterized with ellipsometry and atomic force microscopy (AFM). The copolymer chains were successfully grafted to the surface of the silicon substrate by a reaction between the hydroxyl groups of the nitroxide moiety at the end of the copolymers and the silanol groups on the surface of the silicon wafer. A measurement of the thickness of the grafted copolymer layers showed that the ratio of grafted‐layer thickness to the unperturbed chain radius of gyration decreased with the increasing fraction of 4‐vinylpyridine in the copolymer; this indicated that the grafted layer was strongly attracted to the substrate. In addition, an accelerated grafting process was observed at grafting times ranging from 48 to 72 h for pure poly(4‐vinylpyridine) and copolymers with f values of 0.3 and 0.5. AFM observation revealed that the grafted layers densely and homogeneously covered the silicon substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1332‐1343, 2005 相似文献
3.
Cellulose acetate (CA) hollow fibers were spun via the dry‐jet wet spinning technique under various external coagulant compositions and temperatures. The surface morphology of the resulting hollow fiber was examined using field emission scanning electron microscopy (FESEM) and tapping mode atomic force microscopy (TMAFM). The pure water permeability (PWP) and the retention of dextran of the hollow fiber were also measured. The results showed that both the temperature and composition can affect greatly the surface morphology and hence the permeation performance of hollow fiber membranes when the temperature was over 55°C and the dimethyl formamide (DMF) content was higher than 15%. The on‐line draw ratio increased with the coagulant temperature and DMF content (in the range of 0 to 10%) in the external coagulant. The ultimate tensile strength also increased when the fibers were coagulated in 5–10% DMF and at 70°C. The PWP increased with the DMF content in the coagulant and the coagulant temperature. The retention of dextran decreased with the increase of the DMF content in the coagulant and the coagulant temperature. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
The effect of uniaxial deformation in partially and fully molten states on the morphology of crosslinked low-density polyethylene has been investigated. At low temperatures, the morphology is predominantly fibrillar, with little kebabs appearing on the fibril surfaces. As the deformation temperature is increased into the melting range, the shish density decreases, and overgrowths of kebabs on the fibrils concurrently increase in length. This gives rise to added twisting of the kebabs reflected in the orientation factor analysis. This shish/twisted lamellar kebab texture is observed only in a partially molten state. Studies in a substantially molten state indicate the absence of shish, althugh short lamellae are observed that are oriented in the transverse direction. This morphology indicates a high chain orientation factor as a result of short lamellae that exhibit small twisting similar to Matsumura's rod model. The absence of shishes in the final films stretched isothermally in a substantially molten stage agrees with Schultz's model, in which imperfectly formed shishes dissolve if they are not stabilized by rapid cooling, as is the case in these studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2228–2237, 2004 相似文献
5.
Local surface charge dissipation studied using force spectroscopy method of atomic force microscopy 下载免费PDF全文
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Xiaohong Wang Jianjun Zhou Lin Li Chi‐Ming Chan 《Macromolecular rapid communications》2007,28(20):2001-2006
The morphological evolution of poly(butylene succinate) (PBS) solution‐grown single crystals during annealing was studied using hot‐stage atomic force microscopy. Their morphology changed with increasing temperature and annealing time. The annealing behavior and melting temperature were found to be affected by the substrate. Morphological changes occurred at a much lower temperature on an amorphous carbon film than that on a mica surface. Moreover, the pattern of morphological evolution of the single crystals on a carbon film was different from that on a mica surface. Since the PBS melt had a larger contact angle on the mica surface, these differences in the melting behavior were ascribed to the different interfacial interactions between the chain‐folded surface of the single crystal and the substrate.
7.
Prakash Sista Peishen Huang Samodha S. Gunathilake Mahesh P. Bhatt Ruvini S. Kularatne Mihaela C. Stefan Michael C. Biewer 《Journal of polymer science. Part A, Polymer chemistry》2012,50(20):4316-4324
Two new semiconducting polymers poly{4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran} ( P1 ) and poly {4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran‐alt‐4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]dithiophene} ( P2 ) have been synthesized. These polymers were tested in bulk heterojunction solar cells yielding power conversion efficiencies of 1.19% for P1 and 0.79% for P2 . The surface morphology of the solar cell devices indicated that both the polymers display a granular morphology with smoother films displaying higher power conversion efficiencies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
8.
利用AFM和SNOM对淋巴细胞膜表面超微结构及其光学性质的初步研究 总被引:5,自引:0,他引:5
利用原子力显微镜(Atomic Force Microscopy,AFM)对淋巴细胞表面形貌进行了形态学的初步研究,观察到了其膜表面其他显微技术所不能发现的超微结构.同时也运用扫描近场光学显微镜(Scanning Near field Optical Microscopy,SNOM)对淋巴细胞进行成像,观察了其对光的透射、吸收等光学性质,并对两种成像方法进行了比较.研究发现:淋巴细胞膜表面凹凸不平,分布着大量直径几十到几百纳米不等的小颗粒;淋巴细胞中央部位有自发荧光现象.结果表明,AFM和SNOM可作为进一步探讨淋巴细胞的结构与功能关系的有力工具. 相似文献
9.
Sebastien Berthumeyrie Alexis Colin Cecile Esparcieux Mohamed Baba Fernando Catalina Pierre-Olivier Bussiere Sandrine Therias 《Polymer Degradation and Stability》2013
The consequences of tetramethylpolycarbonate (TMPC) photoageing (λ > 300 nm) on the surface modifications of the material have been analysed. Roughness and stiffness measurements were performed using AFM (Atomic Force Microscopy). Gel fraction measurements, DMTA (Dynamic Mechanical Thermal Analysis) measurements and infrared analyses were also performed. The results indicate that the three-dimensional network forms as a result of crosslinking reactions. The modifications of the properties measured using each technique were followed as functions of the irradiation time, and the influence of oxygen was characterised. The surface modifications are explained in light of the modifications of the chemical structure. Quantitative correlations were obtained between the main relevant criteria characterizing the surface degradation from the chemical structure to the mechanical properties. 相似文献
10.
Nicolae Hurduc Ramona Enea Dan Scutaru Liviu Sacarescu Bogdan C. Donose Anh V. Nguyen 《Journal of polymer science. Part A, Polymer chemistry》2007,45(18):4240-4248
Here we show the possibility to obtain azopolysiloxanes modified with nucleobases (adenine and thymine) with potential application in immobilization and nanomanipulation of biomolecules. We propose a photofluidization mechanism based on the concept of the conformational instability, which can explain the presence of the fluid state below the glass transition. The azopolymers were characterized by 1H NMR, GPC, DSC, DTG, UV spectroscopy, AFM analysis, and molecular simulations. Depending on the type of nucleobase used, the surface of the azopolysiloxane film can be structured in different ways under UV irradiation. Photoisomerization studies in solid state were carried out to demonstrate the influence of the operational conditions (presence or absence of natural visible light) on the polymeric film UV response. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4240–4248, 2007 相似文献
11.
《Surface and interface analysis : SIA》2018,50(4):403-410
The silver thin films have been prepared using magnetron DC‐sputtering. We discuss in detail the thin films AFM images and their properties in different sputtering times of 2 to 6 minutes. Despite the low thickness of the films, the roughness saturation amounts, Ws, are well separated. The surface data do not follow the normal Family‐Vicsek scaling, and we have the local growth exponent, β(Ws(t)∼tβ). We obtained the global roughness scaling exponent α=0.36 and growth exponent, β=0.50. We also obtain the fractal spectrum of the data, f(α). The results show that the spectrum is right‐hook like. It distinguishes between different film thicknesses even in small sizes of hundreds of nanometers. Furthermore, we measure the surface conductivities and compare them to the thin film roughnesses. We investigate the roughness and fractality of the AFM data, looking for their relations to width and conductivity of the silver thin film samples. 相似文献
12.
Servoli E Maniglio D Aguilar MR Motta A San Roman J Belfiore LA Migliaresi C 《Macromolecular bioscience》2008,8(12):1126-1134
Surface properties have a significant influence on the performance of biomedical devices. The influence of surface chemistry on the amount and distribution of adsorbed proteins has been evaluated by a combination of atomic force microscopy (AFM) and surface plasmon resonance (SPR). Adsorption of albumin, fibrinogen, and fibronectin was analyzed under static and dynamic conditions, employing self-assembled monolayers (SAMs) as model surfaces. AFM was performed in tapping mode with antibody-modified tips. Phase-contrast images showed protein distribution on SAMs and phase-shift entity provided information on protein conformation. SPR analysis revealed substrate-specific dynamics in each system investigated. When multi-protein solutions and diluted human plasma interacted with SAMs, SPR data suggested that surface chemistry governs the equilibrium composition of the protein layer. 相似文献
13.
《Surface and interface analysis : SIA》2003,35(4):410-412
Atomic force microscopy (AFM) has been applied to investigate the morphological and topographical surface modifications induced by radiofrequency cold plasma processing of poly(ethyleneterephthalate) textiles. Surface effects are analysed in low‐pressure air plasma for different plasma exposure times. The results show a progressive degradation of the surface with increasing roughness. The analysis suggests that modification of the surface during textile treatment may be ascribed to a plasma‐induced physical process. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
Daniel Siegismund Thomas F. Keller Klaus D. Jandt Markus Rettenmayr 《Macromolecular bioscience》2010,10(10):1216-1223
A model for the adsorption of fibrinogen or, in general, non‐globular shaped proteins on solid surfaces are presented. Two‐dimensional cellular automata simulations of the adsorption of fibrinogen on two different surfaces were performed. The model includes mass transfer toward the surface, adsorption of fibrinogen molecules, and surface diffusion mechanisms for both fibrinogen molecules and clusters. We show that the major physical processes are represented in the recent model. Particularly, the influence of the surface hydrophobicity on the behavior of fibrinogen. Atomic force microscopy images of fibrinogen adsorption on Si model surfaces with different hydrophobicity are compared to the results.
15.
Bruch’s membrane is a layer composed of collagen fibers located just beneath the retina. This study validates a strategy used
to map the morphological and adhesion characteristics of collagen fibers in Bruch’s membrane. Atomic force microscopy tips
were functionalized with different chemical groups and used to map the hydrophilic and hydrophobic regions on the surface
of the eye tissue. The largest adhesion forces were observed when tips functionalized with NH2 groups were used. The trend in the adhesion forces was rationalized based on the distribution of different functional groups
in the triple-helical structure of the collagen fibers. The results of this study can be used to design more effective strategies
to treat eye diseases such as age-related macular degeneration. 相似文献
16.
Anti-lysozyme aptamers are found to preferentially bind to the edge of a tightly packed lysozyme pattern. Such edge-binding
is due to the better accessibility and flexibility of the edge lysozyme molecules. Kelvin probe force microscopy (KPFM) was
used to study the aptamer–lysozyme binding. Our results show that KPFM is capable of detecting the aptamer–protein binding
down to the 30 nm scale. The surface potential of the aptamer–lysozyme complex is approximately 12 mV lower than that of the
lysozyme. The surface potential images of the aptamer-bound lysozyme patterns have the characteristic shoulder steps around
the pattern edge, which is much wider than that of a clean lysozyme pattern. These results demonstrate the potentials of KPFM
as a label-free method for the detection of protein–DNA interactions.
Figure Aptamers preferentially bind on the edge of a protein pattern as revealed by Kelvin force microscopy.
相似文献
Yuguang CaiEmail: |
17.
X. M. Lu Q. H. Lu J. Yin Z. K. Zhu Z. G. Wang 《Journal of Polymer Science.Polymer Physics》2003,41(12):1273-1280
The influence of the mechanical rubbing of a polyimide (PI) film on the laser‐induced periodic structure (LIPS) was demonstrated. The periodicity and amplitude of LIPS were greater when the rubbing direction was parallel to the laser polarization direction. The amplitude became small and the periodicity of LIPS did not show an obvious change when the rubbing direction was perpendicular to the laser polarization direction. The effect of the rubbing pretreatment on LIPS was explained on the basis of the wave‐guide effect of rubbing‐induced microgrooves on LIPS formation. The orientation of PI chains induced by mechanical rubbing was relaxed after laser irradiation, and a new orientation of PI chains was formed during the LIPS formation. When the rubbing direction was perpendicular to the laser polarization direction, the orientation of PI chains remained in the rubbing direction. The laser‐irradiated, perpendicularly rubbed PI surface could be used to verify the effects of surface morphologies and intermolecular interactions on liquid‐crystal alignment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1273–1280, 2003 相似文献
18.
Emiliano Fernández Rebeca Hernández M. Teresa Cuberes Carmen Mijangos Daniel López 《Journal of Polymer Science.Polymer Physics》2010,48(23):2403-2412
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献
19.
Masato Matsuda Ken-ichiro Yamamoto Taiji Yakushiji Makoto Fukuda Takehiro Miyasaka Kiyotaka Sakai 《Journal of membrane science》2008,310(1-2):219-228
Hydrophilizing synthetic polymer dialysis membranes with polyvinylpyrrolidone (PVP) play an important role for inhibition of protein adsorption on membrane surface. In the present study, the effect of PVP on protein adsorption was evaluated from a nano-scale perspective. Swelling behavior of PVP present on wet polysulfone (PS)/PVP film surfaces was observed by atomic force microscopy (AFM). Fibrinogen and human serum albumin (HSA) were immobilized on the tip of AFM probes, with which a force-curve between protein and wet PS/PVP film surface was measured by AFM while scanning in order to visualize two-dimensional protein adsorbability on film surfaces. Furthermore, HSA adsorbability on non-PVP containing PEPA dialysis membrane (FLX-15GW) and PVP containing PEPA dialysis membrane (FDX-150GW) was evaluated by the AFM force-curve method. As a result, PS/PVP film surface was completely covered with hydrated and swollen PVP at 5 wt% or more PVP content. Protein adsorbability on PS/PVP film surfaces decreased greatly with increasing content of PVP. The adsorption of HSA was inhibited by the presence of PVP on film surfaces more significantly than that of more hydrophobic fibrinogen. HSA adsorbability on wet FLX-15GW dialysis membrane surface was 428 ± 174 pN whereas that on wet FDX-150GW dialysis membrane surface was 42 ± 29 pN. 相似文献
20.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献