首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On novel bio-hybrid system based on PLA and POSS   总被引:1,自引:0,他引:1  
In this work, a novel strategy for the preparation of bio-hybrid systems based on polylactic acid (PLA) and polyhedral oligomeric silsesquioxane (POSS) was developed. Indeed, the new method consists in a preliminary functionalization of the polymer matrix and a subsequent reaction of silsesquioxane molecules, characterized by amino or hydroxyl functionalities, potentially capable of reacting with maleic anhydride groups created onto PLA by a free radical process. The method adopted to create maleic anhydride-grafted polylactic acid (PLA-g-MA) allowed to graft 0.7 wt% of MA onto the polymer backbone, avoiding a dramatic reduction of PLA molecular mass. 1H-NMR measurements demonstrated a different reactivity of the two used POSS, namely trans-cyclohexanediolisobutyl POSS (POSS-OH) and aminopropyl heptaisobutyl POSS (POSS-NH2). Indeed, the amino group of POSS-NH2 was found to react with the maleic anhydride group of PLA-g-MA allowing to obtain a hybrid system, carrying silsesquioxane molecules along the polymer backbone while the reactivity of POSS-OH turned out to be much lower. Thermal properties of the synthesized hybrid systems were assessed by means of DSC measurements. Indeed, the presence of POSS grafted onto the macromolecular chain was found to improve PLA crystallinity, by affecting the crystal nucleation density. Moreover, a decrease of surface water wettability was observed in the films made of PLA-g-MA/POSS-NH2.  相似文献   

2.
Nanostructered nanofibers based on poly(vinylidene fluoride) (PVDF) and polyhedral oligomeric silsesquioxane (POSS) have been prepared by electrospinning process. The starting solutions were prepared by dissolving both the system components in the mixture N,N‐dimethylacetamide/acetone. The characteristics of the fiber prepared, studied by scanning electron microscopy, atomic force microscopy, and wide angle X‐ray diffraction, have been compared with those of PVDF fibers. Morphological characterization has demonstrated the possibility to obtain defect‐free PVDF/POSS nanofibers by properly choosing the electrospinning conditions, such as voltage, polymer concentration, humidity, etc. Conversely, in the case of fibers based on the neat polymer, it was not possible to attain the complete elimination of beads in the electrospun nanofibers. The different behavior of the two types of solutions has been ascribed to silsesquioxane molecules, which, without influencing the solution viscosity or conductivity, favor the formation of uniform structures by decreasing the system surface tension. Concerning POSS distribution in the fibers, the morphological characterization of the electrospun films has shown a submicrometric dispersion of the silsesquioxane. It is relevant to underline that cast films, prepared by the same solutions, have been found to be characterized by POSS aggregation, thus demonstrating a scarce affinity between the two‐system components. Indeed, the peculiar solvent evaporation of the electrospun solution, which is much faster than that occurring during the cast process, prevents POSS aggregation, thus leading to the formation of nanofibers characterized by a silsesquioxane dispersion similar to that present in solution. Finally, the presence of POSS improves the electrospun film mechanical properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
以超临界CO2为聚合介质, 硫代苯甲酰基特丁基硫酯(TTBT)为链转移剂, 通过可逆加成-断裂链转移(RAFT)聚合制备了聚丙烯酰胺多面体低聚倍半硅氧烷(PAMPOSS)均聚物及其与甲基丙烯酸甲酯(PMMA)的嵌段共聚物(PAMPOSS-b-PMMA). 对产物结构组成和分子量及其分布进行表征. 结果表明, 在TTBT的控制下, POSS的均聚物和嵌段共聚物具有高分子量及窄分子量分布. 含POSS单体在超临界CO2中为均相聚合, POSS聚合物的结晶性在一定程度上影响其在超临界CO2中溶解性.  相似文献   

4.
An ester (PBPOSS) of 1‐pyrenebutyric acid (PBA) and 1‐(2,3‐propanediol)propoxy‐3,5,7,9,11,13,15‐isobutylpentacyclo‐[9.5.1.1(3,9).1(5,15).1(7,13)]octasiloxane (a polyhedral oligomeric silsesquioxane, POSS) is synthesized by simple one‐step esterification. Thin films of PBPOSS fabricated by the spin‐coating technique exhibit strong excimer emissions of visible light. Upon exposure to the vapours of nitroaromatic compounds, including trinitro‐ toluene and dinitrotoluene, the films show fast fluorescence quenching. The high performance of these gas sensors is due to the high excimer contents and good vapour permeability of the PBPOSS films. Spectroscopic studies indicate that the crystallization of the POSS moieties in PBPOSS films induce the formation of pyrenyl excimers.  相似文献   

5.
Trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) molecules are used to create well-ordered Langmuir-Blodgett films containing silanol groups that interact strongly with dimethyl methylphosphonate (DMMP), a commonly used simulant for the chemical warfare agent sarin. The interaction of DMMP within multilayer POSS films is studied by uptake coefficient and temperature-programmed desorption (TPD) measurements, as well as reflection-absorption infrared spectroscopy (RAIRS). Results indicate a low uptake probability; however, in a DMMP-saturated atmosphere, the organophosphonate molecules are capable of diffusing into and adsorbing within the films. TPD and RAIRS measurements reveal no evidence of DMMP decomposition within the film. Rather, DMMP is found to desorb molecularly with a desorption energy of 122 kJ/mol. RAIRS reveals that strong hydrogen-bonding interactions between the phosphoryl groups of the organophosphonate molecules and the silanol groups of the POSS molecules are responsible for the high sorption energy of the system.  相似文献   

6.
The paper describes a flexible approach to building up high-quality ultrathin SiO2 films under deep UV light irradiation at room temperature. The ultrathin hybrid nanosheet possessing polyoctahedral silsesquioxane (POSS) has been designed to prepare densely packed ultrathin POSS films by the Langmuir-Blodgett (LB) technique. The LB technique enables POSS to have a multilayered structure with nanoscale precision. The films' hardness and modulus changed considerably from 0.1 and 2.6 GPa to 1.7 and 32.2 GPa, respectively, after deep UV light irradiation. Subsequent FTIR measurements revealed that the organic components were removed completely and that the POSS cage structure turned to an Si-O-Si network structure. X-ray photon spectroscopy also confirmed high-quality SiO2 formation with no suboxides.  相似文献   

7.
The room-temperature uptake and reactivity of gas-phase methyl dichlorophosphate (MDCP) and trichlorophosphate (TCP) within trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) Langmuir-Blodgett films are investigated. The halogenated phosphate molecules are found to readily diffuse into and react with the hybrid inorganic-organic silicon-oxide films under ambient conditions. Reflection absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and fast atom bombardment-mass spectrometry (FAB-MS) measurements suggest that the chlorophosphates undergo hydrolysis with the silanol groups of the POSS LB-film. Substitution and elimination reactions appear to cap the corner of the POSS molecules, leaving a surface-bound phosphoryl group and a resulting structure that is highly stable at elevated temperatures.  相似文献   

8.
The efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L ‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L ‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Polymers having polyhedral oligomeric silsesquioxane (POSS) in the main chains are an important class of organic–inorganic hybrid materials. Despite the increasing attention to the POSS polymers, variation of the monomers is still limited. Herein, we have proposed side‐opening POSS (SO‐POSS) monomers. Platinum‐catalyzed hydrosilylation polymerization proceeded to produce polysiloxanes having SO‐POSS in the main chains. The obtained polysiloxanes showed good solubility, high thermal stability, high transparency, and tunable reflective index. In addition, cyclic compounds were obtained during the investigation of the polymerization, and were synthesized with high selectivity under the slightly diluted conditions. The obtained cyclic compounds showed high thermal stability due to the silsesquioxane backbone, and the high dispersibility as a filler in poly(methyl methacrylate) was demonstrated. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2243–2250  相似文献   

10.
通过热引发甲基丙烯酸环戊基-立方低聚倍半硅氧烷(R7R′Si8O12,POSS)(MA-POSS)与臭氧预处理的含氟聚酰亚胺(FPI)自由基接枝共聚制得了含多面体低聚倍半硅氧烷(POSS)的FPI纳米复合物.用核磁共振(NMR)、X-射线衍射(XRD)及场发射扫描电镜(FESEM)等手段对POSS/FPI纳米复合物的化学组成及其形貌结构进行了表征.POSS/FPI纳米复合物薄膜与原始FPI薄膜相比具有更低的、可调的介电常数,它的介电常数(κ)在2.5~2.1之间.  相似文献   

11.
We describe here the design and synthesis of the polyhedral oligomeric silsesquioxane (POSS)‐based dual‐functional molecular fillers for simultaneously lowering refractive indices and improving thermomechanical properties of conventional polymers. We prepared the composite films with poly(methyl methacrylate) and polystyrene containing the series of the POSS derivatives with the single functional unit for interacting with polymer chains and heptacyclopentyl substituents for creating exclusive volumes around the POSS core. From the measurements of refractive indices of polymer composites, it was revealed that all POSS fillers can lower the refractive index of the films. In addition, thermal stabilities and mechanical properties were enhanced by adding POSS fillers. The filler effect on the thermal properties can be explained by the structural features of POSS: The highly symmetrical structure of the silica cube should suppress thermal motions, resulting in the large enhancement of thermomechanical properties of polymer matrices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3583–3589  相似文献   

12.
A high‐performance, low‐dielectric‐constant polyimide (PI) nanocomposite from poly(amic acid) (PAA) cured with a reactive fluorine polyhedral oligomeric silsesquioxane (POSS) isomer was successfully synthesized. The features of this reactive fluorine POSS isomer [octakis(dimethylsiloxyhexafluoropropylglycidyl ether)silsesquioxane (OFG)] provided two important approaches (containing fluorine or being porous in the polymer matrix) of reducing the dielectric constant of PI. This reactive POSS isomer had an average of four epoxy groups and four fluorine groups on the POSS cage, and the epoxy groups could be cured with PAA to form a network framework of a PI/POSS nanocomposite. The PI/OFG nanocomposite had a high crosslinking density, high porosity (24.3%), high hydrophobicity, and low polarizability. These properties enhanced the thermal (glass‐transition temperature ~ 362 °C) and dielectric (dielectric constant ~2.30) properties of PI more than other POSS derivatives introduced into the PI backbone. A large number of small POSS particles (<10 nm) were embedded inside the PI matrix when the OFG content was low, whereas interconnected POSS aggregation domains were observed when the OFG content was high. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5391–5402, 2006  相似文献   

13.
倍半硅氧烷改性环氧树脂的研究进展   总被引:1,自引:0,他引:1  
倍半硅氧烷是近年发展起来的一种分子水平的有机无机杂化材料。文章介绍了倍半硅氧烷的结构、合成以及笼型倍半硅氧烷(POSS)基高分子复合材料的结构及合成方法。倍半硅氧烷改性聚合物可以提高聚合物的热性能、阻燃性能和物理机械性能等。文章综述了倍半硅氧烷改性环氧树脂的研究进展。  相似文献   

14.
Brewster angle microscopy (BAM) shows that a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS) nanofiller, octaisobutyl-POSS, forms aggregates at all surface concentrations at the air/water interface. When amphiphilic poly(dimethylsiloxane) (PDMS) is blended with the octaisobutyl-POSS (>10 wt % PDMS), the degree of POSS aggregation dramatically decreases. Thermodynamic analyses and morphology studies through surface pressure-area per monomer isotherm data and BAM, respectively, exhibit three distinct composition regimes: (1) Blends with >70 wt % POSS have unstable isotherms whose shapes deviate from those of PDMS and form large rigid domains comparable to but smaller than pure, octaisobutyl-POSS films. (2) At compositions between approximately 40 and 70 wt % POSS, the isotherms' features are qualitatively similar to those of pure PDMS, and extensive nanofiller "networks" are observed by BAM. (3) For compositions < or = approximately 30 wt % POSS, the isotherms are essentially those of pure PDMS with small POSS domains dispersed in the PDMS matrix. These results provide further insight into nanofiller aggregation mechanisms and dispersion that may be present in thicker films and bulk systems.  相似文献   

15.
A series of poly(methyl methacrylate) derivatives containing polyhedral oligomeric silsesquioxane (POSS) groups (MCP#) were synthesised via free radical polymerisation (FRP) using methacryl isobutyl POSS (MA-POSS) and methyl methacrylate as monomers to investigate liquid crystal (LC) alignment property of these polymer films. The LC cells made from the films of the polymers having 100 mol% of MA-POSS units (MCP100) showed vertical LC alignment having a pretilt angle of about 90°. The vertical LC alignment behaviour on the MCP100 film was ascribed to the very hydrophobic MCP100 surface having the surface energy value smaller than about 23 mJ/m2 generated by the nonpolar bulky POSS group. Good electro-optical characteristics, such as voltage holding ratio (VHR) and residual DC voltage (R-DC), were observed for the LC cells fabricated using MCP100 as a LC alignment layer.  相似文献   

16.
A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the product. This new POSS was used to modify the structure of hexamethylene diisocyanate trimer and then copolymerized with hexamethylene diisocyanate and poly (tetramethylene glycol) to get a serious of waterborne polyurethane (WPU)/POSS hybrid materials with low dielectric constants for microelectronics applications. The results showed that POSS particles were uniformly dispersed in the WPU dispersions. The WPU/POSS films did not show any macrophase separation, even when the POSS content was as high as 16%. As the POSS content increased from 0% to 16%, the tensile strength was increased from 2.3 to 7.3 MPa, the dielectric constant was decreased from about 2.9 to 2.0, and the thermal stability of the WPU/POSS was also improved.  相似文献   

17.
Polyhedral oligomeric silsesquioxane (POSS) meets increasing interest as a building unit for inorganic-organic hybrid materials. The incorporation of cyclopentyl-substituted POSS (CpPOSS) into polystyrene (PS) thin films led to an inhibition of dewetting. In this paper, the dispersion state of CpPOSS in the CpPOSS/PS hybrid films and, furthermore, the relationships between the structure and dewetting inhibition effect are discussed. Structural analysis of the hybrid films revealed that CpPOSS segregated to the film surface and crystallized. The segregation of CpPOSS to the surface changes the surface free energy and spreading coefficient of the film. Interfacial structure was also roughened by the segregation of CpPOSS, which can contribute to the inhibition of dewetting by pinning the contact line of the PS film with the substrate. The inhibition of dewetting can be attributed to the modification of the film surface and interface by the segregation of CpPOSS.  相似文献   

18.
The mechanical properties and fire resistance of vinyl ester resin (VER) composites containing cage‐shaped octaphenyl silsesquioxane (OPS), incompletely cage‐shaped phenyl silsesquioxane (PhT7POSS), and ladder‐shaped phenyl silsesquioxane (PPSQ) were investigated. The POSS structure and dispersion have a great influence on the mechanical properties, thermal stability, and decomposition process of VER composites. The bending strength at break and modulus of the VER‐POSS composites were enhanced obviously, especially for VER‐PPSQ composite and VER‐OPS composite, respectively. In addition, PhT7POSS‐based VER composites revealed the lower values of the peak heat release rate, total heat release, and total smoke release in cone calorimetry tests due to the formation of dense carbon/silica protective layers that acted as a barrier to heat and mass transfer. Moreover, the flame‐retardant mechanisms of condensed phase and gas phase were also investigated in detail. These results illustrate VERs modified by OPS, PhT7POSS, and PPSQ are providing an applicable method to fabricate the composites with excellent flame‐retardant and mechanical properties.  相似文献   

19.
New polymeric nanocomposites were prepared by covalent bonding of nanosized octahedral silsesquioxane particles containing reactive glycidyl group to polyamidoimides containing a carboxy group in the pendant chain. The influence of temperature, molecular weight of the polymer, and reaction time on the covalent bonding of polyhedral oligomeric silsesquioxane (POSS) nanoparticles was revealed. The effect of the POSS nanoparticle incorporation on the structure, dielectric and deformation-strength properties, and heat resistance of the new polymeric nanocomposites was examined.  相似文献   

20.
A trisilanol derivative of polyhedral oligomeric silsesquioxane (POSS), trisilanolisobutyl-POSS, has recently been reported to form stable monolayers at the air/water interface. This paper explores the mono- and multilayer properties of another POSS derivative, trisilanolcyclohexyl-POSS, with pi-A isotherm and Brewster angle microscopy measurements. Results show that with continuously increasing surface concentration via symmetrical compression, trisilanolcyclohexyl-POSS amphiphiles at the air/water interface undergo a series of phase transitions from traditional Langmuir monolayers (one-POSS-molecule thick) to unique rodlike hydrophobic aggregates in multilayer films (approximately eight-POSS-molecules thick) that are dramatically different from "collapsed" morphologies seen in other systems. Stable and hydrophobic rodlike structure formation on water is presumably due to trisilanolcyclohexyl-POSS' unique molecular structure and strong tendency to form intermolecular hydrogen bonds in the solid state. This result is consistent with existing POSS/polymer composite research, which shows that POSS molecules tend to aggregate and crystallize into lamellar nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号