首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Results from optimizing the spatial structure and calculated electronic spectra of anion clusters TiSi n ? (n = 6–18) are presented. Calculations are performed within the density functional theory. Spatial structures of clusters detected experimentally are established by comparing the calculated and experimental data. It is shown that prismatic and fullerene-like structures are the ones most energetically favorable for clusters TiSi n ? . It is concluded that these structures are basic when building clusters with close numbers of silicon atoms.  相似文献   

2.
The systematic structures search for neutral and Zintl anionic Ti-doped silicon clusters TiSin0/−/2− (n = 6-16) have been carried out using the ABCluster global search technique combined with a double-hybrid density functional method. Based on the predicted energies, adiabatic electron affinities, vertical detachment energies and the consistency between simulated and experimental photoelectron spectroscopy, the true global minimum structures are confirmed. The results show that structural growth pattern of neutral TiSin clusters is from linked structures (n = 10-12) to encapsulated configurations (n = 13-16). In contrast, the evolution pattern of Zintl anionic TiSin−/2− clusters begins with the pentagonal bipyramid structure (n = 6). As the Si atoms increase, these Si atoms attach to the surface adjacent to Ti atom, and gradually surround Ti atom. Eventually, the encapsulated structure is formed when n = 12. Moreover, two extra electrons not only perfect the structure of TiSi12 but also improve its chemical and thermodynamic stability.  相似文献   

3.
4.
The structural, electronic, bonding, magnetic, and optical properties of bimetallic [Ru(n)Au(m)](0/+) (n + m ≤ 3; n, m = 0-3) clusters were computed in the framework of the density functional theory (DFT) and time-dependent DFT (TD-DFT) using the full-range PBE0 non local hybrid GGA functional combined with the Def2-QZVPP basis sets. Several low-lying states have been investigated and the stability of the ground state spinomers was estimated with respect to all possible fragmentation schemes. Molecular orbital and population analysis schemes along with computed electronic parameters illustrated the details of the bonding mechanisms in the [Ru(n)Au(m)](0/+) clusters. The TD-DFT computed UV-visible absorption spectra of the bimetallic clusters have been fully analyzed and compared to those of pure gold and ruthenium clusters. Assignments of all principal electronic transitions are given and interpreted in terms of contribution from specific molecular orbital excitations.  相似文献   

5.
Attempts to expand the versatility of well defined clusters are a relevant issue in the design of building blocks for functional nanostructures. Here, we investigate the plausible formation of related structures from the emblematic highly symmetrical 18-e [W@Au12] cluster. The calculated [W@Au12Ptn] series, with n = 0, 1, 2, 3, and 4, show cohesion energies, HOMO-LUMO gap, adiabatic electron affinities (AEAs) and adiabatic ionization potentials (AIPs), indicating a relative stability to the parent cluster [W@Au12] experimentally characterized, where clusters with n = 1 and n = 4 are suggested as the most stable with respect to oxidation. The resulting symmetry lowering away from the high icosahedral symmetry upon adding Pt atoms induces a sizable splitting of the frontiers shells, which in turn effectively modify the properties of the calculated clusters, as observed from calculated optical properties. The estimated absorption spectra show an interesting broadening effect of the absorption peaks, which appears as a useful approach for further design of broad black absorbers, which are able to absorb light in a wider range, with potential capabilities to enhance the efficiency of thin film solar cells and photocatalysis processes, among other applications.  相似文献   

6.
The initial nucleation of gold clusters Aun (n = 1–5) on TiO2 rutile (110) reduced surface is studied using density functional theory and a full-potential augmented-plane-wave method implemented in the WIEN2k code. The first two gold atoms remained tied to the surface with a bond length similar to those belonging to other well-known related materials, while the other gold atoms do not spread over the surface; they preferred to form a new layer. The occurrence of relativistic effects produced a preferential triangle geometry for Au3 and a combination of triangular units for Au4 and Au5. The Au–Au average distance increased from n = 2 to n = 5, indicating an expansion with a tendency to the bond distance found in the bulk. We are reporting an early 2D→3D transition of small folding, from Au3→Au4, followed by an Au4→Au5 transition of evident 3D character.  相似文献   

7.
Li  Jing  Zhang  Lei  Gao  Zhen-Hai  Zhang  Shuai  Lu  Cheng  Li  Gen-Quan 《Structural chemistry》2016,27(3):983-992
Structural Chemistry - The geometries, growth patterns, relative stabilities and electronic properties of yttrium-doped silicon clusters Y2Si n (n = 1–12) are systematically...  相似文献   

8.
Photodissociation spectra were determined for Au(m)(+) . Ar(n) (m=7; n=0-3 and m=8,9; n=0,1) in the photon energy range of 2.14-3.02 eV. Experimental data were compared with predictions of dipole allowed transitions using time-dependent density functional theory (TDDFT) as applied to cluster structures from both DFT (B3-LYP functional) and ab initio calculations at the MP2 level. Argon adduct formation does not significantly perturb the bare metal cluster core structure, but it does change the metal cluster spectrum for highly symmetric cluster structures. The photodissociation spectra are consistent with a transition from planar to three-dimensional gold cluster core geometries between m=7 and m=8 for both n=0 and 1. TDDFT predictions for favored isomers describe experimental absorption features to within +/-0.25 eV. We also discuss size-dependent trends in TDDFT transition energies for the lowest energy two- and three-dimensional structures of Au(m)(+)(m=3-9).  相似文献   

9.
In the coordination, hypervalent and cluster chemistry, three important characteristic properties are the maximum coordination number, magic number, and core coordination number. Yet, few studies have considered these three numbers at the same time for an ML(n) cluster with n larger than 8. In this article, we systematically studied the three properties of SiLi(n) (n = 4-16) clusters at the B3LYP/6-31G(d), B3LYP/6-311++G(2d), and CCSD(T)/6-311++G(3df)//B3LYP/6-311++G(2d) (for energy only) levels. Various isomeric forms with different symmetries were calculated. For each SiLi(n) (n = 4-9), silicon cohesive energy (cE) from SiLi(n) --> Si + Li(n) reaction, vertical ionization potential (vIP), and vertical electron affinity (vEA) were obtained for the lowest-energy isomer. We found that the maximum Li-coordination number of Si is 9, which is the largest number among the known MLi(n) clusters. All cE, vIP, and vEA values predicted that 6 is the magic Li-coordination number of Si. For small SiLi(n) (n < or = 6) clusters, Li atoms favor direct coordination to Si, whereas for larger SiLi(n) (n > or = 7) clusters, there is a core cluster that is surrounded by excessive Li atoms. The core Li-coordination number is 6 for SiLi(n) (n = 7,8), 7 for SiLi(n) (n = 9,10), 8 for SiLi(n) (n = 11-15) and 9 for SiLi(n) (n > or = 16). Through the calculations, we verified the relationship between the structure and stability of SiLi(n) with the maximum coordination number, magic number, and core coordination number.  相似文献   

10.
The first examples of vinylidene complexes of the cycloheptatrienyl tungsten system [W(C=CHR)(dppe)(η-C?H?)](+) (dppe = Ph?PCH?CH?PPh?; R = H, 3; Ph, 4; C?H?-4-Me, 5) have been synthesised by reaction of [WBr(dppe)(η-C?H?)], 1, with terminal alkynes HC≡CR; a one-pot synthesis of 1 from [WBr(CO)?(η-C?H?)] facilitates its use as a precursor. The X-ray structure of 4[PF?] reveals that the vinylidene ligand substituents lie in the pseudo mirror plane of the W(dppe)(η-C?H?) auxiliary (vertical orientation) with the phenyl group located syn to the cycloheptatrienyl ring. Variable temperature 1H NMR investigations on [W(C=CH?)(dppe)(η-C?H?)][PF?], 3, estimate the energy barrier to rotation about the W=C(α) bond as 62.5 ± 2 kJ mol?1; approximately 10 kJ mol?1 greater than for the molybdenum analogue. Deprotonation of 4 and 5 with KOBu(t) yields the alkynyls [W(C≡CR)(dppe)(η-C?H?)] (R = Ph, 6; C?H?-4-Me, 7) which undergo a reversible one-electron oxidation at a glassy carbon electrode in CH?Cl? with E(?) values approximately 0.12 V negative of Mo analogues. The 17-electron radicals [6](+) and [7](+) have been investigated by spectroelectrochemical IR, UV-visible and EPR methods. The electronic structures of representative vinylidene (3) and alkynyl (6) complexes have been investigated at the B3LYP/Def2-SVP level. In both cases, electronic structure is characterised by a frontier orbital with significant metal d(z2)character and this dominates the structural and spectroscopic properties of the system.  相似文献   

11.
Ab initio calculations with relativistic effective potentials have been carried out on 12 trinuclear molybdenum/tungsten cluster aqua ions [M3X4(H2O)9]4– (M3= Mo3, W3 for X = O, S, Se, Te; M3=Mo2W, MoW2 for X = O, S). The electronic structures and bonding pictures of l-12 are discussed in terms of the delocalized and localized molecular orbitals as well as the Mulliken populations, natural populations, and Mayer bond orders. It is shown that the (d-p) bonding in the puckered six-membered ring of the [M3(µ-X)3] core arises from a closed continuous ring of three mutually adjacent localized (d-p-d) bonds with strong interactions. It is these three-centered two-electron (d-p-d) bonds that account for the unusual physicochemical properties and reactivities of these cluster compounds. The wavelengths and the assignment of electronic spectra have been given, and the relation between the wavelength shili and the (d-p) bonding is discussed, The reactivities of the ligand substitution reactions and two kinds of addition reactions as weil as some kinetic and redox properties of these compounds are briefly discussed by taking advantage of this Iocalization (d-p-d) a bonding picture.  相似文献   

12.
Critical temperature(T b ) of thermal explosion for energetic materials is estimated from Semenov’s thermal explosion theory and the non-isothermal kinetic equation dα/dt=A 0 exp(bT)[1+(T–T 0 )b]f(α) deduced via reasonable hypotheses, where T 0 is the initial point of the deviation from the baseline of DSC curve. The final formula is (T b –T e0 ){1+1/[1+( T b –T 00 )b]}=1. We can easily obtain the initial temperature(T 0i ) and onset temperature(T ei ) from the non-isothermal DSC curves, the values of T 00 and T e0 from the equation T 0i or ei =T 00 or e0 +α 1 β i +α 2 β i2 +…+α L–2 β iL –2 , i=1,2,…,L, the value of b from the equation: ln[β i /(T ei –T 0i )]=ln[A 0 /G(α)]+bT ei , so as to calculate the value of T b . The result obtained with this method coincides completely with the value of T b obtained by Hu-Yang-Liang-Wu method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号