首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The synthesis of well-defined multigraft copolymers having a polydiene backbone with polystyrene side chains is briefly reviewed, with particular focus on controlling branch point spacing and branch point functionality. Use of living anionic polymerization and chlorosilane linking chemistry has led to the synthesis of series of materials having regularly spaced trifunctional (comb), tetrafunctional (centipede), and hexafunctional (barbwire) branch points. The morphologies of these materials were characterized by transmission electron microscopy and small-angle X-ray scattering, and it was found that the morphologies were controlled by the local architectural asymmetry associated with each branch point. Mechanical properties studies revealed that such multigraft copolymers represent a new class of thermoplastic elastomers (TPEs) with superior elongation at break and low residual strains as compared to conventional TPEs.  相似文献   

2.
Thermal stability and phase structure of thermoplastic elastomers (TPEs) based on post-consumer materials such as recycled lowor high-density polyethylene and ground tyre rubber (GTR) were investigated by using TG, DSC and DMTA analysis. Preliminary reclamation of GTR leads to enhancement of compatibility between polyethylene matrix and dispersed GTR particles.  相似文献   

3.
线形低密度聚乙烯/废胶粉热塑弹性体动态硫化性能研究   总被引:1,自引:0,他引:1  
利用动态硫化法制备了线形低密度聚乙烯(LLDPE)/废胶粉(GTR)热塑弹性体。重点研究了两种交联剂:硫和过氧化二异丙苯(DCP)对共混物性能的影响。加入一定量的苯乙烯-丁二烯-苯乙烯(SBS)共聚物作为增容剂。结果表明,经过DCP动态硫化后的共混物的力学性能比简单共混的共混物有明显的提高,而加入硫磺体系对共混物力学性能影响不大甚至有所下降。通过红外光谱、热分析(DSC)和扫描电镜(SEM)对共混物的热行为和表面形态研究表明,加入DCP交联剂使LLDPE、SBS和胶粉之间发生了交联反应,从而增加了胶粉颗粒与LLDPE间的界面相容性,使其热塑性弹性体的力学性能得以提高。  相似文献   

4.
Polylactide (PLA) being a very brittle biopolymer could be toughened by blending with thermoplastic elastomers such as thermoplastic polyurethane elastomer (TPU) and thermoplastic polyester elastomer (TPE); unfortunately, these blends are immiscible forming round domains in the PLA matrix. Therefore, the purpose of this study was to investigate the effects of using maleic anhydride (MA) compatibilization on the toughness and other properties of PLA blended with TPU and TPE. MA grafting on the PLA backbone (PLA‐g‐MA) was prepared separately by reactive extrusion and added during melt blending of PLA/thermoplastic elastomers. IR spectroscopy revealed that MA graft might interact with the functional groups present in the hard segments of TPU and TPE domains via primary chemical reactions, so that higher level of compatibilization could be obtained. SEM studies indicated that PLA‐g‐MA compatibilization also decreased the size of elastomeric domains leading to higher level of surface area for more interfacial interactions. Toughness tests revealed that Charpy impact toughness and fracture toughness (KIC and GIC) of inherently brittle PLA increased enormously when the blends were compatibilized with PLA‐g‐MA. For instance, GIC fracture toughness of PLA increased as much as 166%. It was also observed that PLA‐g‐MA compatibilization resulted in no detrimental effects on the other mechanical and thermal properties of PLA blends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Thermoplastic elastomers (TPEs) combine high elasticity with melt processability due to their structural features being based on physical associations rather than chemical crosslinking. Their mechanical properties are governed by the interplay of the different dynamics present in the system (i.e., hard block associations and soft block mobility) combined with their morphology. Irrespective of their exact chemical structure or type of association (crystals, hydrogen bonds, or glassy domains), many soft TPEs show a reduction in toughness at elevated temperatures. In this study, we investigate the high-temperature mechanical properties of a model series of industrially relevant TPEs via systematically varying composition and molecular weight. The results show an increase in temperature resistance and in large-strain stress response as chain length increases. We underline the key parameters that influence the mechanical behavior and explain the observed effect of molecular weight on both the temperature- and rate-dependent large-strain response. A physical network-based model is presented that can explain the experimental findings assuming an improved network connectivity and extended lifetime of the entangled segments with increasing molecular weight.  相似文献   

6.
通过松香与聚醚丙烯酸酯的Diels Alder加成产物与聚乙二醇、柠檬酸的缩聚反应,合成出松香基聚醚酯弹性体,产物采用红外、拉伸、DSC和TGA进行了表征。 TGA测试表明,松香基聚醚酯弹性体的10%热失重温度在300 ℃以上,拉伸测试表明,拉伸强度为0.26~0.62 MPa,断裂伸长率为338%~458%。  相似文献   

7.
In this work, a systematic study of physical characterization on a series of commercial polyolefinic thermoplastic elastomers (TPEs), is reported. Formulations from different manufacturers, having a wide range of Shore hardness values (from A45 to D51), were examined using simple, inexpensive and standard laboratory methods. From this analysis, the TPE chemical composition and its relationship with hardness and tensile set—the key parameters that define the TPE performance in most of the applications—could be established.

It was found that the strategy followed by the manufacturers to design TPEs is very similar. The EPDMs used for the different formulations look similar in ethylene content and thermal properties. Therefore, the TPE bulk modulus (or hardness) is mainly controlled by the PP content. Nice elastomeric behavior was observed only in grades with a dominant proportion of EPDM, in agreement with the deformation mechanism generally accepted for this type of materials. Grades with higher hardness values—and a dominant proportion of PP—showed a mechanical response corresponding to a toughened thermoplastic, even when these grades are marketed by the producers as “thermoplastic elastomers”. Differently from conventional crosslinked elastomers, where hardness and ability to recover from highly deformed states can be simultaneously controlled by changing the degree of crosslinking, the results of this work indicate that it is very difficult to increase TPE hardness without sacrificing elastomeric properties.  相似文献   


8.
It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra−) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol−1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers’ topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.  相似文献   

9.
Problems related to non-biodegradable waste coming from vulcanized rubber represent one of the pre-eminent challenges for modern society. End-of-life tyres are an important source of this typology of waste and the increasingly high accumulation in the environment has contributed over the years to enhance land and water pollution. Moreover, the release into the environment of non-degradable micro-plastics and other chemicals as an effect of tyre abrasion is not negligible. Many solutions are currently applied to reuse end-of-life tyres as a raw material resource, such as pyrolysis, thermo-mechanical or chemical de-vulcanisation, and finally crumbing trough different technologies. An interesting approach to reduce the environmental impact of vulcanised rubber wastes is represented by the use of degradable thermoplastic elastomers (TPEs) in tyre compounds. In this thematic review, after a reviewing fossil fuel-based TPEs, an overview of the promising use of degradable TPEs in compound formulation for the tyre industry is presented. Specifically, after describing the properties of degradable elastomers that are favourable for tyres application in comparison to used ones, the real scenario and future perspectives related to the use of degradable polymers for new tyre compounds will be realized.  相似文献   

10.
Bioactive nanofibers present a promising synthetic niche for in vivo applications due to their morphological and functional resemblance to the extracellular matrix. Potentially interesting nanofibers are constructed from the hard‐segment regimes in well‐defined thermoplastic elastomers (TPEs). The supramolecular interactions between these hard segments cause physical crosslinking by the formation of nanofibers and provide excellent mechanical properties. Here, we make use of a new class of biocompatible supramolecular TPEs, in which both the formation of the main chain and the hard block is based on multiple hydrogen‐bonding interactions. A self‐assembly process is explored to arrive at well‐defined peptide‐modified nanofibers embedded in a biocompatible soft matrix. Crucial for the success in the synthetic design is the use of an exact match between the molecular recognition units of the peptide and the supramolecular unit that takes care of forming the supramolecular nanofibers of the TPE. Evidence for the strong anchoring of the modified peptides in the hard‐segment nanofibers of the supramolecular TPE is provided by simple extraction experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
New linear triblock thermoplastic elastomers (TPEs) comprising a rubbery polyisobutylene (PIB) midblock flanked by two glassy endblocks of various styrenic polymers have been synthesized by living carbocationic polymerization by sequential monomer addition. First isobutylene (IB) was polymerized by a bifunctional tert-ether (dicumyl methyl ether) initiator in conjunction with TiCl4 coinitiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living narrow molecular weight distribution PIB midblock ( = 1.1–1.2) has reached the desired molecular weight, the styrenic monomers together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to start the blocking of the glassy segments from the living ⊕PIB⊕ chain ends. While p-methylstyrene (pMeSt), p-t-butylstyrene (ptBuSt) and indene (In) gave essentially 100% blocking to the corresponding glassy endblocks, the blocking of 2,4,6-trimethylstyrene (TMeSt) and α-methylstyrene (αMeSt) were ineffective. Uncontrolled initiation by protic impurities was prevented by the use of DtBP. In the simultaneous presence of DtBP and the strong ED N,N-dimethylacetamide (DMA), TPEs with good mechanical properties (10–20 MPa tensile strength, 300–600% elongation) were prepared. The products exhibit a low and a high temperature Tg characteristic of phase separated rubbery and glassy domains. The service temperature of these new TPEs exceeds that of PSt–PIB–PSt triblock copolymers due to the higher Tgs (PpMeSt = 108, PptBuSt = 142 and PIn = 220–240°C) of the outer blocks. The Tg of the glassy blocks can be regulated by copolymerizing two styrene derivatives; a triblock copolymer with outer blocks of poly(pt-butylstyrene-co-indene) showed a single glassy transition Tg = +165°C, i.e., in between that of PptBuSt and PIn. Virgin TPEs have been repeatedly compression molded without deterioration of physical properties. The high melt flow index obtained with a TPE containing PptBuSt endblocks suggests superior processability relative to those with PSt end-blocks. The tensile strength retention at 60°C of the former TPE is far superior to that of a PSt–PIB–PSt triblock of similar composition.  相似文献   

12.
This paper reports the effects of hard (polystyrene, PS) and soft (polyisobutylene, PIB) segment composition and the molecular architecture (linear versus star, PS and PIB block length) on the morphology and mechanical properties of polystyrene/polyisobutylene (SIBS) block copolymers synthesized by living carbocationic polymerization. Atomic force microscopy, dynamic mechanical thermal analysis and tensile testing verified the phase-separated nature of the block copolymers, which behaved as thermoplastic elastomers (TPEs). The morphology of these TPEs is similar to polydiene-based TPEs, and is defined by the soft/hard segment composition. Interestingly, topology (linear vs star) did not have a major influence on morphology. Tensile testing showed that for both linear and three-arm star block copolymers, the modulus and tensile strength increased while elongation at break decreased with higher PS content. However, three-arm star block copolymers showed larger moduli than their linear homologues with similar PS content and PIB arm length, indicating the influence of molecular architecture on mechanical properties. These results might serve as a foundation for macromolecular engineering design for optimizing properties.  相似文献   

13.
相同软硬段质量配比聚醚酯弹性体PEG/PBT的结构与表征   总被引:9,自引:0,他引:9  
以熔融缩聚法合成了一系列聚乙二醇(PEG)/聚对苯二甲酸丁二醇酯(PBT)聚醚酯热塑性弹性体,用NMR,FTIR,DSC及力学性能测试等方法表征了材料的结构及性能.讨论了在相同软硬段质量配比下,不同软硬段长度对材料性能的影响.结果表明,随着软段PEG长度增加,硬段PBT长度相应增长,弹性模量基本保持不变,抗拉强度、屈服应力及特性粘度增加.  相似文献   

14.
Raman spectroscopy including mapping technique appears as a powerful technique for the characterization of polymer blends like thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs). The Raman spectra of polymers blends such as natural rubber/polypropylene (NR/PP) and 65% hydrogenated natural rubber/polypropylene (65%HNR/PP) were identified and the phase distribution was determined. The study was driven for the same type of blends in TPEs state and TPVs state obtained after to 2 different processes, either peroxide cure or sulfur cure. The morphology of TPEs and TPVs obtained by Raman spectroscopy were compared and confirmed using scanning electronic microscopy.Raman mapping shows that the phase morphology of NR/PP, 65%HNR/PP, were characterized as continuous rubber phase morphology of the thermoplastic elastomers (TPEs) and a fine dispersion of cross-linked rubber phase in a continuous matrix of the thermoplastic vulcanizates (TPVs). Raman spectroscopy is demonstrated to be a reference to determine the content ratio of each component in the TPVs. Moreover, Raman mapping could be used to calculate the phase size of cross-linked rubber phase dispersed in the thermoplastic vulcanizates (TPVs).  相似文献   

15.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   

16.
This investigation presents novel thermoplastic elastomers (TPEs) based on poly(styrene‐butadiene‐styrene) (SBS) and ester‐type polyurethane (TPU‐EX) materials were prepared with varying compositions. A series of investigations were conducted on the relationships between mechanical properties, dynamic mechanical properties, anti‐vibration and vibration isolator properties given, and the different compositions. The experimental results show incompatibilities between SBS and TPU‐EX. SBS mechanical properties, dynamic mechanical properties, anti‐vibration and vibration isolator properties are improved with an increase in the amount of TPU‐EX, suggesting that the blending of SBS with TPU‐EX was consistent with the compound rule. Based on the obtained results, the viscoelasticity of SBS materials, their capacity to isolate vibration, and their anti‐vibration performance can be adjusted by controlling the proportion of TPU‐EX. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Binary CNBR/PP‐g‐GMA and ternary CNBR/PP/PP‐g‐GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP‐g‐GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP‐g‐GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP‐g‐GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP‐g‐GMA, Tc of PP‐g‐GMA in CNBR/PP‐g‐GMA blends increased about 10 °C. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP‐g‐GMA in CNBR/PP‐g‐GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP‐g‐GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP‐g‐GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP‐g‐GMA blends were greatly improved. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1042–1052, 2004  相似文献   

18.
本文研究了动态硫化EPDM/PP热塑性弹性体的动态疲劳老化行为,考察了其力学性能的变化,并分析了产生力学性能下降的原因。实验结果表明,随着疲劳时间的延长、疲劳振幅的增大,材料的断裂强度降低,并认为疲劳过程中完全硫化的EPDM橡胶粒子和热塑性塑料PP界面处的分子链断裂、滑移导致了断裂强度的降低;紫外光的加入,加速了材料在疲劳过程的分子链断裂、滑移速率,使材料的断裂强度有更大程度的降低;在机械疲劳老化单独作用下,材料体系几乎没有发生氧化反应,而紫外光的加入,促使了机械疲劳老化过程中氧化反应的发生。  相似文献   

19.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The orientation of polybutadiene chains in thermoplastic elastomers based on hydrogen bonding complexes is investigated under uniaxial deformation by two-dimensional small-angle neutron scattering (SANS), deuteron magnetic resonance spectroscopy (2H-NMR), optical birefringence and infrared dichroism spectroscopy (FTIR-D). While SANS probes orientation on the length scale of the radius of gyration,2H-NMR, birefringence and FTIR-D monitor orientation on a segmental scale. The deformation of the elastomer chains appears to be affine on the different length scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号