首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmonic photothermal (PPT) characteristics of gold nanostructures have been extensively investigated theoretically and experimentally due to their potential for use materials science and industry. The management of the size and shape of gold nanoparticles has been a key issue in the development of better solutions for PPT heat generation because their size and shape determine their resultant photothermal properties. However, the light absorption of gold nanostructures is mainly dependent on the wavelength and orientation of the incident light; hence, maintaining uniform size and shape is critical for achieving maximum photothermal energy. Morphologically homogeneous spherical gold nanoparticles, or super gold nanospheres prepared by slowly etching uniform octahedral gold nanoparticles, demonstrate better PPT heat generation compared with commercially available nonsmooth gold nanoparticles (GNSs). The PPT heating experiments show a maximum temperature difference of 5.7 °C between the super and ordinary GNSs with the same average maximum Feret's diameters, which result from the more efficient PPT heat power generation (20.6%) of the super GNSs. In an electromagnetic‐wave simulation, the super GNSs show lower polarization dependence and a 24.6% higher absorption cross‐section than ordinary GNSs.  相似文献   

2.
金纳米粒子光学性质中的尺寸和形状效应   总被引:4,自引:2,他引:4  
纳米尺度的金属及半导体呈现出特殊的光学、电学及磁学性质,采用近年发展起来的离散偶极近似(DDA)的方法,我们分析了金纳米粒子的尺寸及形状对其光学性质的影响。粒子周围介质的影响在文中亦作了分析。计算结果显示,金纳米粒子的等离子体吸收带同时受到粒子尺寸和形状的影响,但来自形状的影响更为明显。与米氏理论及扩展的甘氏理论相比较,DDA方法在粒子尺寸不再远小于入射光波长的时候更准确,并能应用于任何形状的纳米粒子。理论计算与实验结果能较好的吻合。  相似文献   

3.
系统阐述了与金纳米粒子(GNPs) 放射增敏效应相关实验的方法与结果、影响GNPs 放射增敏的因素、GNPs 放射增敏的细胞和动物实验表现及其相关机制。同时结合相关实验,分析和比较了15 nm 柠檬酸钠包被的GNPs 的放射增敏效应,发现GNPs 在高LET 的碳离子束和低LET 的X射线辐照下对Hela细胞的杀伤力随其浓度的增加而增大;在50% 的细胞存活率下,当GNPs 的质量浓度为7.5 g/mL时,其X射线的剂量减少率和碳离子的相对生物学效应值(RBE) 的增加率达到了最大,分别为65.3% 和43.6%,同时GNPs 共培养细胞24 和48 h 后,未出现细胞周期同步化的现象。This paper describes the methods and results of the previous experiments, the experimental phenomena of the cell and animal tests and the relative mechanisms on the radiosensitizing effect of GNPs. Together with our experiments, the radiosensitizing effects of 15 nm citrate-capped GNPs and related mechanisms are analyzed and compared, finding that Hela cell killing of GNPs increase along with their concentration after exposure to high- and low-LET radiation such as carbon ions and X-rays. In addition, the percentages of dose reduction of the X-rays and RBE increment of the carbon ions reached their maximums 65.3% and 43.6%, respectively,at 50% survival level when Hela cells were pre-treated with 7.5 g/mL GNPs. Moreover, Hela cells showed no cell-cycle synchronization after 24 and 48 h exposure to GNPs.  相似文献   

4.
Extremophiles are the group of organisms that are far overlooked for exploring novel biomaterials in the field of material science and bionanotechnology. Extremophilic bacterial‐sulfated exopolysaccharide, mauran (MR), is employed for the bioreduction and passivation of gold nanoparticles (AuNps) to enhance the biocompatibility of AuNps and used for photothermal ablation of cancer cells. Here, various concentrations of MR solution are tested for the reduction of HAuCl4 solution in the presence as well as in the absence of an external reducing agent, to produce mauran‐gold nanoparticles (MRAu Nps). These biocompatible nanocomposites are treated with cancer cell lines under in vitro conditions and NIR irradiated for complete ablation. MRAu Nps‐treated cancer cells on immediate exposure to infrared radiation from a femtosecond pulse laser of operating wavelength 800 nm are subjected to hyperthermia causing cell death. Biocompatible MR stabilization could fairly reduce the cytotoxicity caused by bare AuNps during biomedical applications. Application of a biocompatible polysaccharide from extremophilic bacterial origin for reduction and passivation of AuNps and used for a biomedical purpose is known to be first of its kind in bionanofusion studies.  相似文献   

5.
Gold nanoparticles are of great interest for various nanoelectronic applications, e.g., for making single electron transistors or very fine leads to molecular size entities. For this and other applications, it is important that all particles have controllable size and shape. In this paper, we describe the production of size-selected gold aerosol particles in the 20nm range made by evaporation in a high-temperature tube furnace and subsequent size selection. To obtain spherical particles, it was necessary to reshape the particles at high temperature, which was investigated for temperatures between 25°C and 1200°C. High-resolution transmission electron microscopy showed that the degree of crystallinity became higher for higher reshaping temperature. During reshaping at high temperature, an anomalous charging behavior was discovered, whereby negatively as well as positively charged particles became multiply negatively charged. Possible mechanisms for explaining this thermally activated phenomenon are discussed.  相似文献   

6.
The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering investigation, we determine that the deposited film has the structure of silicon nanocrystals embedded in silicon nitride (nc-Si/SiNx) thin film at a certain hydrogen dilution amount. The analysis of optical absorption spectra implies that the Si NPs is affected by quantum size effects and has the nature of an indirect-band-gap semiconductor. Further, considering the effects of the mean Si NP size and their dispersion on oscillator strength, and quantum-confinement, we obtain an analytical expression for the spectral absorbance of ensemble samples. Gaussian as well as lognormal size-distributions of the Si NPs are considered for optical absorption coefficient calculations. The influence of the particlesize-distribution on the optical absorption spectra was systematically studied. We present the fitting of the optical absorption experimental data with our model and discuss the results.  相似文献   

7.
激光诱导玻璃内部金纳米颗粒的析出及光谱   总被引:4,自引:0,他引:4  
使用钛宝石飞秒激光引发和热处理相结合,实现了在含有金离子的硅酸盐玻璃内部,有空间选择性地析出金纳米颗粒。对吸收光谱的研究表明,随着热处理温度的升高,吸收峰强度增大且红移;随着激光功率密度的增大,金纳米颗粒也增大。在特定的激光和热处理条件作用下,可以在玻璃内部有空间选择性的使金离子还原后聚集,形成金纳米颗粒,具有量子尺寸效应。改变激光功率和热处理温度可以控制所析出的金属纳米粒子的尺寸,从而实现多色显示,飞秒激光诱导金纳米颗粒具有稳定性,颜色具有持久性。  相似文献   

8.
Poly(ethylene glycol) (PEG) is frequently used to coat various medical nanoparticles (NPs). As PEG is known to minimize NP interactions with biological specimens, the question remains whether PEGylated NPs are intrinsically less toxic or whether this is caused by reduced NP uptake. In the present work, the effect of gold NP PEGylation on uptake by three cell types is compared and evaluated the effect on cell viability, oxidative stress, cell morphology, and functionality using a multiparametric methodology. The data reveal that PEGylation affects cellular NP uptake in a cell‐type‐dependent manner and influences toxicity by different mechanisms. At similar intracellular NP numbers, PEGylated NPs are found to yield higher levels of cell death, mostly by induction of oxidative stress. These findings reveal that PEGylation significantly reduces NP uptake, but that at similar functional (= cell‐associated) NP levels, non‐PEGylated NPs are better tolerated by the cells.  相似文献   

9.
Nanocarriers prepared from poly(lactide‐co‐glycolide) (PLGA) have broad biomedical applications. Understanding their cellular uptake and distribution requires appropriate visualization in complex biological compartments with high spatial resolution, which cannot be offered by traditional imaging techniques based on fluorescent or radioactive probes. Herein, the encapsulation of gold nanoparticles (GNPs) into PLGA nanoparticles is proposed, which should allow precise spatial visualization in cells using electron microscopy. Available protocols for encapsulating GNPs into polymeric matrices are limited and associated with colloidal instability and low encapsulation efficiency. In this report, the following are described: 1) a facile protocol to functionalize GNPs with PLGA polymer followed by 2) encapsulation of the prepared PLGA‐capped GNPs into PLGA nanocarriers with 100% encapsulation efficiency. The remarkable encapsulation of PLGA‐GNPs into PLGA matrix obeys the general rule in chemistry “like dissolves like” as evident from poor encapsulation of GNPs capped with other polymers. Moreover, it is shown that how the encapsulated gold nanoparticles serve as nanoprobes to visualize PLGA polymeric hosts inside cancer cells at the spatial resolution of the electron microscope. The described methods should be applicable to a wide range of inorganic nanoprobes and provide a new method of labeling pharmaceutical polymeric nanocarriers to understand their biological fate at high spatial resolution.  相似文献   

10.
双光子荧光染料分子在生物医学成像中具有广阔的应用前景,但取代效应对分子结构以及光物理性质影响的探求相对匮乏. 本文设计并研究了一系列脂滴检测染料分子,分析了分子的光学性质以及无辐射跃迁等. 通过分子内弱相互作用和电子- 空穴布居分析,阐述了其内在机理. 结果表明,所研究的分子均具有优良的光物理性能、高效荧光量子产量、大的斯托克斯位移以及显著的双光子吸收截面等. 本工作合理地解释了实验现象并阐述了取代效应对脂滴检测NAPBr染料分子的双光子吸收和激发态性质的影响,这为设计新型的高效有机分子提供了理论指导.  相似文献   

11.
为明确纳米金粒子对肿瘤组织近红外光学成像的影响,研究观察了肿瘤组织于纳米金粒子贮积后对其近红外光谱范围的光学特性的变化特点.实验中,应用MCG-803人胃腺癌细胞系(来源于CTCC),采用原位接种法建立BALB/C裸小鼠胃癌模型,给予动物静脉注射纳米金粒子悬液,以组织切片形式检测肿瘤组织近红外光衰减系数的特征性变化.结...  相似文献   

12.
Particle size plays a crucial role in melting process of nanoparticles, but the mechanism, factors, range, and degree of the size effect are still unclear. Here, the precise equations of the integral melting enthalpy and entropy with radius of nanoparticles are deduced, without any adjustable parameters, and the influencing mechanism and the factors are discussed. Experimentally, the melting of spherical nano‐Au with different radii (0.9–37.4 nm) is taken as a system to research the melting behavior of nanoparticles. Combining the results of theory and experiments, the influencing regularities, range, and degree are discussed. The results indicate that there are significant effects of particle size on the temperature, integral enthalpy, and integral entropy of melting, which decrease with the radius decreasing. These effects can be attributed to specific surface area, surface tension, and its temperature coefficient. When the radius exceeds 10 nm, specific surface area is the decisive factor, there exists the linear relationships of temperature, integral enthalpy, and integral entropy of melting with the reciprocal of radius. However, when the radius is less than 10 nm, the effects of surface tension and its temperature coefficient gradually hold the main position, the linear relations do not exist.  相似文献   

13.
4,4''-二甲氨基二苯乙烯双光子吸收理论研究--溶剂效应   总被引:2,自引:0,他引:2  
苏燕  王彦华  王传奎 《光学学报》2003,23(6):646-650
对最近实验室合成的分子材料 4 ,4 ' 二甲氨基二苯乙烯的双光子吸收特性在从头计算的基础上进行了理论研究。理论模型是建立在密度泛函理论的基础上的。利用含时的密度泛函理论来计算分子的非线性光学性质 ,而溶剂效应则通过自洽响应场方法的极化连续模型来模拟。计算结果表明 ,三态模型可以很好地给出该分子在低激发态范围内的双光子吸收截面。随着溶剂极性的增加 ,单光子波长红移 ,双光子吸收截面增加。双光子吸收截面的大小和实验给出的结果符合得较好。  相似文献   

14.
Under visible‐light irradiation, gold nanoparticles (Au NPs) supported by titania (TiO2) nanofibers show excellent activity and high selectivity for both reductive coupling of nitroaromatics to corresponding azobenzene or azoxylbenzene and selective oxidation of aromatic alcohols to corresponding aldehydes. The Au NPs act as active centers mainly due to their localized surface plasmon resonance (LSPR) effect. They can effectively couple the photonic energy and thermal energy to enhance reaction efficiency. Visible‐light irradiation has more influence on the reduction than on the oxidation, lowering the activation energy by 24.7 kJ mol?1 and increasing the conversion rate by 88% for the reductive coupling, compared to merely 8.7 kJ mol?1 and 46% for the oxidation. Furthermore, it is found that the conversion of nitroaromatics significantly depends on the particle size and specific surface area of supported Au NPs; and the catalyst on TiO2(B) support outperforms that on anatase phase with preferable ability to activate oxygen. In contrast, for the selective oxidation, the effect of surface area is less prominent and Au NPs on anatase exhibit higher photo‐catalytic activity than other TiO2 phases. The catalysts can be recovered efficiently because the Au NPs stably attach to TiO2 supports by forming a well‐matched coherent interface observed via high‐resolution TEM.  相似文献   

15.
The influence of gold nanoparticle morphology on nucleation of isotactic polypropylene (PP) crystallization was investigated. Previous experiments indicated certain nucleation activity of gold nanoparticles, varying with their size. In this work, eight types of gold micro/nanoparticles were used: vacuum-sputtered nanostructures (nanoparticles, nanoislands, and nanolayers), chemically prepared isometric gold nanocrystals (5, 20, and 100 nm diameters), and two types of gold microcrystals with well-developed crystal facets [with (100) and (111) facets, respectively]. To minimize the effect of particle agglomeration, we used our recently introduced sandwich method, in which the nucleating agent was deposited between thin PP films and the nucleation was evaluated by polarized light microscopy (PLM), X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The nucleation activity of Au particles in PP was lower than it might be expected from the previous studies and depended on their morphology. The nucleation activity of Au microcrystals with well-developed facets was higher than the activity of non-faceted Au nanocrystals.  相似文献   

16.
17.
制备了La,Ce,Nd,Sm,Eu,Gd,Dy微粒和纳米金,分别用La,Ce,Nd,Sm,Eu,Gd,Dy微粒替代部分的纳米金,研究了La-Au,Ce-Au,Nd-Au,Sm-Au,Eu-Au,Gd-Au,Dy-Au微粒分别对银染效果的影响及其紫外可见(UV-Vis)吸收光谱。与纳米金相比,La-Au,Ce-Au,Nd-Au,Sm-Au,Eu-Au,Gd-Au,Dy-Au微粒可延长银染后的斑点持续的时间,其中Nd-Au微粒的效果最好,斑点持续的时间为30 min,是纳米金的2.7倍;可大幅度加深斑点的颜色,其中Nd-Au,Sm-Au微粒的效果最好,用Nd微粒替代部分的纳米金,纳米金用量降低了80%,但还能提高银染法的灵敏度。在200~800 nm范围,La,Ce,Nd,Sm,Eu,Gd,Dy微粒和纳米金溶液的UV-Vis吸收光谱只有一个吸收峰,λmax分别为275,277,276,276,278,277,278和521 nm;La-Au,Ce-Au,Nd-Au,Sm-Au,Eu-Au,Gd-Au,Dy-Au微粒混合液的UV-Vis吸收光谱有两个吸收峰,λmax(RE)λmax(Au)分别为276和522 nm,276和522 nm,276和523 nm,276和523 nm,276和522 nm,276和522 nm,276和523 nm,纳米金和La微粒的吸收峰的波长发生了红移,Ce,Eu,Gd,Dy微粒的吸收峰的波长发生了蓝移,Nd,Sm微粒的吸收峰的波长不变,纳米金与稀土微粒可能有相互作用。  相似文献   

18.
Titanium dioxide (TiO2) nanoparticles were prepared by the oxidation of titanium tetrachloride (TiCl4) in a diffusion flame reactor. The average diameter of particles was 15–30 nm and mass fraction of anatase ranged from 40% to 80%. Effects of particle size and phase composition of those TiO2 nanoparticles on photocatalytic properties such as decomposition of methylene blue, bacteria and ammonia gas were investigated. The degree of decomposition of methylene blue by the TiO2 nanoparticles under the illumination of the black light was directly proportional to the anatase mass fraction, but inversely to the particle size. The decomposition of bacteria and ammonia gas by the TiO2 nanoparticles under the illumination of the fluorescent light showed the same trend as in the case of the methylene blue.  相似文献   

19.
The “far‐field” surface plasmon resonance (FSPR) of metal nanoparticles, which have built a facile way to emission enhancement of red, green, blue, and white with nice reproducibility, has big potential application in solution‐processed organic light‐emitting diodes (OLEDs). According to the theory of the “far‐field” effect, the reflectivity of the metal surface and the phase shift at the reflection play an important role in enhancing ratio, which strongly relate to the size and shape of nanoparticles. In this work, gold nanospheres with different sizes and nanorods are synthesized in order to determine the size and shape effect of FSPR. The results demonstrate that the one with higher reflectivity in a certain range induces a better emission enhancement in the luminous efficiency and the maximum brightness. The nanoparticles with bigger sizes and shape of rods have higher reflectivity, which is consistent with the simulation based on FSPR effect. The phase shifts of different nanoparticles are optimized by the distance between gold nanoparticles and emitters. The metal NPs with a high reflectivity and the applicable phase shift will have big potential for the emission enhancement in OLEDs.  相似文献   

20.
Nanotechnology is set to impact a wide range of various fields, including medicine, materials technology, environmental sciences, and engineering/manufacturing. Nanoparticles are categorized depending on their size, composition, shape, and surface functionality. Due to the excessive growth of nanostructured materials (NSMs) in production and industrial applications, human and environmental exposure to them and their possible toxicity issues are inevitable. The main objective of this review is to study NSMs, in particular metallic and metallic oxide nanoparticles, and properties that have a determinative role in their bioimpacts. Nevertheless, the main focus is to provide an overview of NSMs toxicology. Medical and environmental applications of the NSMs are discussed here. Also, key factors on the toxicity of the nanoparticles such as shape, size, chemical composition, and surface functionality are discussed. Finally, toxicity of the nanoparticles is going to be highlighted, and relevant studies are critically compared. This review gives a broad scientific view for improving the functional efficiency of nanomaterials while mitigating their possible adverse and unintended effects on biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号