首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

2.
Pb2PdX6 (X = Cl, Br) – Compounds with Elongated [PdX6] Octahedra In contradiction to published data new compounds in the systems PbX2—PdX2 (X = Cl, Br) with the formula Pb2PdCl6 (I) and Pb2PdBr6 (II) were found. These were synthesized by thermal treatment of the corresponding mixtures of PbX2 and PdX2 (X = Cl, Br). X-ray single crystal structure analysis shows isotypism of I and II, monoclinic, P21/c (No. 14), Z = 2, I: a = 9.037(2) Å, b = 6.224(1) Å, c = 8.162(1) Å, β = 90.31(7)β, II: a = 9.512(7) Å, b = 6.584(8) Å, c = 8.383(3) Å, β = 90.07(5)º. Strongly elongated PdX6 octahedra are found in the crystal structure. Additional characterisation of the compounds was done by DTA, IR/RAMAN spectra and 207Pb MAS NMR investigations. Remarcable low field shifts were found for 207Pb.  相似文献   

3.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

4.
A 2D lead(II) coordination polymer [Pb2(phen)2(N3)3(ClO4)]n,( 1 ) containing 1,10‐phenanthroline (phen) and two different anions, has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopy and X‐ray crystallography. The single‐crystal X‐ray data show two different kinds of Pb2+ ions with coordination numbers of eight, Pb1 = PbN6O2 and Pb2 = PbN8, with hemidirected and holodirected structures, respectively. The supramolecular features in 1 is negiotated through the weak but directional C‐H···O and C‐H···N interactions and aromatic π–π stacking interactions.  相似文献   

5.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

6.
The reaction of methylammonium halides and cobalt halides yielded the organic‐inorganic hybrid compounds of general formula (CH3NH3)2CoX4. By varying the different halides, we were able to synthesize the whole row from Cl to I as well as some mixed halides compounds and to determinate the crystal structures. (CH3NH3)2CoX4 (X = Cl, Br, Cl0.5Br0.5, Br0.5I0.5) crystallize isotypic to (CH3NH3)2HgCl4 in space group P21/c with Z = 4 [X = Cl: a = 7.6483(9), b = 12.6885(18), c = 10.8752(12) Å, β = 96.639(9)°; X = Cl0.5Br0.5: a = 7.8271(9), b = 12.9543(9), c = 11.1007(11) Å, β = 96.320(8)°; X = Br: a = 7.9782(2), b = 13.1673(2), c = 11.2602(2) Å, β = 96.3260(10)° and X = Br0.5I0.5: a = 8.2435(12), b = 13.645(2), c = 11.5856(18) Å, β = 95.54(2)°]. The mixed halides show a statistic distribution in both cases. In (CH3NH3)2CoCl2I2 an ordered variant is realized representing a new structure type [C2/m, Z = 4, a = 18.808(4), b = 7.3604(7), c = 10.4109(17) Å, β = 120.364(13)°]. (CH3NH3)2CoI4 crystallizes again isotypic to the respective mercury compound [(CH3NH3)2HgCl4] [Pbca, Z = 8, a = 10.9265(5), b = 12.1552(5), c = 20.9588(9) Å]. All structures are build up by inorganic tetrahedral [CoX4]2– anions and organic (CH3NH4)+ cations. Additionally the Raman spectra as well as the optical reflectance spectra are discussed.  相似文献   

7.
Bis(disulfide)bridged Nb(+4) cluster halide complexes [Nb2S4X8]4– (X = Cl, Br) were prepared by acid hydrolysis of [Nb2S4(NCS)8]4– in concentrated aqueous HCl or HBr, solution from which they can be isolated as double salts Cs5[Nb2S4X8]X (X = Cl, 1 ; X = Br, 2 ). The crystal structures of 1 and 2 were determined. The isolation and X-ray structure of oxonium salt (H3O)5 [Nb2S4Cl8]Cl ( 3 ) is also reported. 1 – 3 contain new [Nb2S4X8]4– anions which can also be viewed as excised building blocks of polymeric solids NbS2X2. The extra halogen resides in the center of octahedron formed by six Cs+ or H3O+ ions. All the three salts are isostructural and crystallize in tetragonal space group Immm with the following parameters: a = 10.269(2), b = 16.343(2), c = 7.220(1) Å for 1 , a = 10.934(1), b = 16.613(2), c = 7.470(1) Å for 2 , a = 9.639(1), b = 16.031(1), c = 7.071(1) Å for 3 . The parameters of the Nb2S4 core are only slightly affected by the change from Cl to Br.  相似文献   

8.
CCSD(T) calculations have been used for identically nucleophilic substitution reactions on N‐haloammonium cation, X? + NH3X+ (X = F, Cl, Br, and I), with comparison of classic anionic SN2 reactions, X? + CH3X. The described SN2 reactions are characterized to a double curve potential, and separated charged reactants proceed to form transition state through a stronger complexation and a charge neutralization process. For title reactions X? + NH3X+, charge distributions, geometries, energy barriers, and their correlations have been investigated. Central barriers ΔE for X? + NH3X+ are found to be lower and lie within a relatively narrow range, decreasing in the following order: Cl (21.1 kJ/mol) > F (19.7 kJ/mol) > Br (10.9 kJ/mol) > I (9.1 kJ/mol). The overall barriers ΔE relative to the reactants are negative for all halogens: ?626.0 kJ/mol (F), ?494.1 kJ/mol (Cl), ?484.9 kJ/mol (Br), and ?458.5 kJ/mol (I). Stability energies of the ion–ion complexes ΔEcomp decrease in the order F (645.6 kJ/mol) > Cl (515.2 kJ/mol) > Br (495.8 kJ/mol) > I (467.6 kJ/mol), and are found to correlate well with halogen Mulliken electronegativities (R2 = 0.972) and proton affinity of halogen anions X? (R2 = 0.996). Based on polarizable continuum model, solvent effects have investigated, which indicates solvents, especially polar and protic solvents lower the complexation energy dramatically, due to dually solvated reactant ions, and even character of double well potential in reactions X? + CH3X has disappeared. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
Colourless crystals grow in the colder part of a glass ampoule when AlX3·5NH3 with X = Cl, Br, I is heated for 3—6 d to 330 °C (Cl), 350 °C (Br) and 400 °C (I), respectively. The chloride forms hexagonal prisms while the bromide and iodide were obtained as a bunch of lancet‐like crystals. The chloride and bromide crystallize isotypic whereas the iodide has an own structure type. All three are related to the motif of the K2PtCl6 type. So the formula of the ammoniates may be written as X2[Al(NH3)5X] ≙ [Al(NH3)5X]X2. The compounds are characterized by the following crystallographic data AlCl3·5NH3: Pnma, Z = 4, a = 13.405 (1)Å, b = 10.458 (1)Å, c = 6.740 (2)Å AlBr3·5NH3: Pnma, Z = 4, a = 13.808 (2)Å, b = 10.827 (1)Å, c = 6.938 (1)Å AlI3·5NH3: Cmcm, Z = 4, a = 9.106 (2)Å, b = 11.370 (2)Å, c = 11.470 (2)Å For the chloride and the bromide the structure determinations were successful including hydrogen positions. All three compounds contain octahedral molecular cations [Al(NH3)5X]2+ located in distorted cubes formed by the remaining 2X ions. The orientation of the octahedra to each other is clearly different for those with X = Cl, Br in comparison to the one with X = I.  相似文献   

10.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

11.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   

12.
Synthesis and Properties of Bis(tetra(n-butyl)ammonium)μ-Carbido-di(halophthalocyaninato(2–)ferrates(IV)); Crystal Structure of Bis(tetra(n-butyl)ammonium) μ-Carbido-di(fluorophthalocyaninato(2–)ferrate(IV)) Trihydrate μ-Carbido-di(pyridinephthalocyaninato(2–)iron(IV)) reacts with tetra(n-butyl)ammonium halide (nBu4N)X) in solution (X = F) or in a melt (X = Cl, Br) to yield bis(tetra(n-butyl)ammonium μ-carbido-di(halophthalo-cyaninato(2–)ferrat(IV)). The fluoro-complex salt crystallizes as a trihydrate monoclinically in the space group P121/n1 with the following cell parameters: a = 15.814(1) Å; b = 22.690(5) Å; c = 25.127(3) Å; β = 98.27(1)°, Z = 4. The Fe atoms are almost in the centre (Ct) of the (Niso)4 planes (Niso: isoindoline-N atom) with a Fe–Ct distance of 0.053(1) Å. The average Fe–Niso distance is 1.939(4) Å, the Fe–(μ-C) distance 1.687(4) Å and the Fe–F distance 2.033(2) Å. The Fe–(μ-C)–Fe core is linear (179.5(3)°). The pc2-ligands are staggered (φ = 42(1)°) with a convex distortion. The asymmetric Fe–(μ-C)–Fe stretch (in cm–1) is observed in the IR spectra at 917 (X = F), 918 (Cl) and 920 (Br) and the symmetric Fe–(μ-C)–Fe stretch at 476 cm–1 in the resonance Raman spectra. The IR active asymmetric Fe–X stretch (in cm–1) absorbs at 336 (X = F), 203 (Cl), 182 (Br), respectively.  相似文献   

13.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

14.
Inhaltsübersicht. Die beiden silicathaltigen Blei(II)-oxidhalogenide Pb4[SiO4]Cl4 und Pb4[SiO4]Br4 wurden erstmals dargestellt und ihre Kristallstruktur an Einkristallen mit Röntgen-beugungsmethoden ermittelt. Die Verbindungen kristallisieren in der monoklinen Raumgruppe P21/c (No. 14) mit den Gitterparametern: Pb4[SiO4]Cl4: A = 8,73(1) Å, b = 15,68(1) Å, c = 8,265(6) Å, β = 92,4(1)°, Z = 4 Pb4[SiO4]Br4: A = 9,00(1) Å, b = 16,217(8) Å, c = 8,404(4) Å, β = 92,4(1)°, Z = 4 Im Gegensatz zu der “nichtstöchiometrischen” Verbindungsgruppe um Pb8O7Br2 · SiO2 konnten hier alle Atomlagen ermittelt werden. Es liegen einzelne SiO4-Gruppen vor, die über Pb2+ zu leicht gewellten Netzen verbunden sind. Zwischenräume und Löcher der Netze werden von Halogenidionen aufgefüllt. Preparation and Crystal Structures of the First Two Members of a New Type of Lead (II) Oxyhalides, Pb4[SiO4]X4 (X = Cl, Br) Both silicate-bearing lead(II) oxyhalides Pb4[SiO4]Cl4 and Pb4[SiO4]Br4 were prepared and studied for their crystal structure with X-ray single crystal methods for the first time. The compounds crystallize in the monoclinic space group P21/c (No. 14) with following lattice parameters: Pb4[SiO4]Cl4: A = 8.73(1) Å, b = 15.68(1) Å, c = 8.205(6) Å, β = 92.4(1)°, Z = 4 Pb4[SiO4]Br4: A = 9.00(1) Å, b = 16.217(8) Å, c = 8.404(4) Å, β = 92.4(1)°, Z = 4. In contrast with further works about the group of nonstoichiometric lead oxyhalides Pb8O7Br2 · SiO2 in the present work all atomic positions were determined. The crystal structure shows single SiO4 groups linked only by Pb2+ ions to form slightly undulated nets. Holes and interspaces of these nets are stuffed with halide ions.  相似文献   

15.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

16.
Reactions of copper(I) halides (X = Cl, Br, I) with thiophene-2-carbaldehyde thiosemicarbazone and triphenylphosphine in 1 : 1 : 2 molar ratio yield tetrahedral mononuclear complexes, [CuX1-S-Httsc)(Ph3P)2] (X = Cl, 1; Br, 2; I, 3), characterized by elemental analysis, IR, NMR (1H, 13C, 31P), and single crystal X-ray crystallography (1). The unit cell of 1 has two independent distorted tetrahedral molecules (1a and 1b) with different bond parameters. One acetonitrile is entrapped between them. Crystal data: C86H77Cl2Cu2N7P4S4 1: triclinic, P-1, a = 12.8810(9), b = 18.5049(13), c = 18.7430(13) Å, α = 63.7130(10), β = 89.0960(10), γ = 85.5010(10)°, V = 3992.4(5) Å3, Z = 2, R (int) = 0.0314. Bond parameters: 1a, Cu(1A)–Cl(1A), 2.3803(5); Cu(1A)–S(1A), 2.3822(5); Cu(1A)–P(1A), 2.2498(5) Å; P(1A)–Cu(1A)–P(2A), 124.294(19)°; 1b, Cu(1B)–Cl(1B), 2.3975(5); Cu(1B)–S(1B), 2.3756(5); Cu(1B)–P(1B), 2.2777(5) Å; P(1B)–Cu(1B)–P(2B), 127.156(19)°.  相似文献   

17.
Contact with SO2 causes almost immediate dissolution of tetraalkylammonium halides, R4NX, (R = CH3 (Me), X = I; R = C2H5 (Et), X = Cl, Br, I; R = C4H9 (nBu), X = Cl, Br), with the formation of an adduct, [R4N]+[(SO2)nX] (n = 1–4). Vapor pressure measurements indicate the proclivity for SO2 uptake follows the order N(CH3)4+ < N(C2H5)4+ < N(C4H9)4+. This trend is in accord with the Jenkins–Passmore volume‐based thermodynamic model. Born–Haber cycles, incorporating the lattice energy and gas phase energy terms, are used to evaluate the energetic feasibility of reactions. Density functional theory calculations (B3PW91; 6‐311+G(3df)) have been used to calculate the energetics of (SO2)nX (X = Cl and Br) anions in the gas phase. The experimental studies show that tetraalkylammonium halides are feasible sorbents for SO2. In order to correlate the theoretical model, experimental enthalpy, Δr and entropy, Δr changes have been determined by the van't Hoff method for the binding of one SO2 molecule to (C2H5)4NCl, resulting in the liquid adduct (C2H5)4NCl · SO2. The structure of the analogous 1:1 bromide adduct, (C2H5)4NBr · SO2, has been determined by single‐crystal X‐ray diffraction (monoclinic, P21/c, a = 9.1409(14) Å, b = 12.3790(19) Å, c = 11.3851(17) Å, β = 107.952(2)°, V = 1225.6(3) Å3). The structure consists of discrete alkylammonium cations, bromide anions and SO2 molecules with short contacts between the anion and SO2 molecules. The (C2H5)4N+ cationadopts a transoid conformation with D2d symmetry, and represents a rare example of a well‐ordered (C2H5)4N+ cation in a crystal structure. The Br anions and SO2 molecules forms a chain, (SO2Br)n, with bifurcated contacts. Non‐bonding electron pairs on the halide anions engage in electrostatic interactions with the sulfur atoms and charge‐transfer interactions with the antibonding S–O orbitals of the bound SO2 moiety. Raman and 17O NMR spectra provide compelling evidence for a charge‐transfer interaction between SO2 molecules and the halide ions.  相似文献   

18.
Single Crystal X-Ray Analysis of Compounds with Covalent Metal–Metal Bonds. II. Molecular and Crystal Structure of X2Sn[Mn(CO)5]2 (X?Cl, Br) Both X2Sn[Mn(CO)5]2 compounds (X?Cl, Br) crystallize in the monoclinic crystal system with at times different values in the lattice parameters. They belong to the space group C2h5. The structures have been solved using 2 107 symmetrical independent reflection for Cl2Sn[Mn(CO)5]2 and 1 470 reflections for Br2Sn[Mn(CO)5)2] by applying the heavy atom method. The following interatomic distances have been found: Cl2Sn[Mn(CO)5]2, Sn? Mn = 2.635(1) Å, Sn? Cl = 2.385(2) Å, Mn? C = 1.852(8) Å, C? O = 1.128(10) Å; Br2Sn[Mn(CO)5]2, Sn? Mn = 2.642(3) Å, Sn? Br = 2.548(2) Å, Mn? C = 1.851(21) Å, C? O = 1.124(25) Å. In addition, bond angles of X? Sn? X and Mn? Sn? Mn of these compounds have also been estimated in the case of X = Cl: 95.80(7)° and 126.25(4)° and for X?Br: 98.44(8)° and 125.88(9)°. The individual molecules of the X2Sn[Mn(CO)5]2 solids are surrounded by ligands showing distorted tetrahedral configuration at the Sn atom and distorted octahedral configuration at the Mn atom.  相似文献   

19.
Preparation of the Nonahalogenodiplatinates(IV), [Pt2X9]?, X ? Cl, Br Spectroscopic Characterization, Normal Coordinate Analysis, and Crystal Structure of (PPN)[Pt2Br9] On heating the tetrabutylammonium salts (TBA)2[PtX6], with trifluoroacetic acid the nonahalogenodiplatinates(IV) (TBA)[Pt2X9], with X ? Cl, Br are formed. The X-ray structure determination on (PPN)[Pt2Br9] (orthorhombic, space group Pca2, Z = 4) shows for the anions pairs of face-sharing octahedra with nearly D3h symmetry. The mean terminal and bridging Pt? Br bond lengths are determined to be 2.42 and 2.52 Å, respectively. The electrostatic interaction of the Pt atoms results in the Pt? Pt distance of 3.23 Å and an elongation as it has been forecasted by the MO scheme for d6 systems. Using the structural data a normal coordinate analysis based on a general valence force field for [Pt2Br9]? has been performed, revealing a good agreement of the calculated frequencies with the bands observed in the IR and Raman spectra. The stronger bonding of the terminal as compared to the bridging ligands is shown by the valence force constants, fa(Br1) = 1,55 > fd(Brb) = 0,93 mdyn/ Å.  相似文献   

20.
The title compounds have been synthesized at 1473 K from stoichiometric mixtures of the binary components Mg3N2, MgX2 (X = Cl, I) and BN in arc‐welded steel ampoules encapsulated in evacuated silica tubes. Mg2[BN2]Cl ( 1 ) and Mg8[BN2]5I ( 2 ) crystallize in the orthorhombic space groups Pbca (no. 61) and Imma (no. 74), respectively, with a = 6.6139(8)Å, b = 9.766(1)Å, c = 10.600(1)Å, Z = 8 for 1 and a = 13.535(3)Å, b = 9.350(2)Å, c = 11.194(2)Å, Z = 4 for 2 . The crystal structures are characterized mainly by Mg6 trigonal prisms which are condensed to 3D frameworks in different ways. Part of the trigonal prisms are centered by the [N—B—N]3— anions and other voids in the framework by the X anions. The magnesium environment around Cl is a very distorted monocapped trigonal prism (CN = 6+1) and that of I is a bicapped heptagonal prism (CN = 14+2). The bond lengths and bond angles for the relevant [BN2]3— anions are d(B—N) = 1.330 — 1.338Å, ∠N—B—N = 175.8° in 1 and d(B—N) = 1.330 — 1.339Å, ∠N—B—N = 176.8° — 178.0° in 2 . The vibrational spectra of the title compounds have been recorded and interpreted based on the Dh symmetry of the relevant [N—B—N]3— groups considering the site symmetry splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号