首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium-ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

2.
Mitigating ambient nitrogen dioxide (NO2) pollution via selective adsorption on porous materials is a promising approach to tackle such an increasingly pressing environmental health issue. However, very few porous adsorbents have sufficiently high NO2 adsorption capacity and good regenerability simultaneously. Here we attempt to address this challenge by developing π-backbonding adsorbents in the transition metal (TM) incorporated porphyrin metal–organic frameworks (PMOFs). Breakthrough experiments show that PMOFs with inserted TMs achieve appreciable NO2 capacity and good regenerability. Combined in situ DRIFTS, synchrotron powder XRD, and DFT calculations reveal the adsorption mechanism: NO2 partially transforms to N2O4 and interacts with transition metal via π-backbonding and Al-node via hydrogen bonding. This work affords new insights for designing next-generation adsorbents for ambient NO2 removal and presents PMOFs as a platform to tailor π-backbonding adsorbents.  相似文献   

3.
We report the synthesis of a set of 2D metal–organic frameworks (MOFs) constructed with organosilicon-based linkers. These oligosilyl MOFs feature linear SinMe2n(C6H4CO2H)2 ligands (lin-Sin, n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases.  相似文献   

4.
We report two novel three-dimensional copper-benzoquinoid metal–organic frameworks (MOFs), [Cu4L3]n and [Cu4L3 ⋅ Cu(iq)3]n (LH4=1,4-dicyano-2,3,5,6-tetrahydroxybenzene, iq=isoquinoline). Spectroscopic techniques and computational studies reveal the unprecedented mixed valency in MOFs, formal Cu(I)/Cu(III). This is the first time that formally Cu(III) species are witnessed in metal–organic extended solids. The coordination between the mixed-valence metal and redox-non-innocent ligand L, which promotes through-bond charge transfer between Cu metal sites, allows better metal-ligand orbital overlap of the d-π conjugation, leading to strong long-range delocalization and semiconducting behavior. Our findings highlight the significance of the unique mixed valency between formal Cu(I) and highly-covalent Cu(III), non-innocent ligand, and pore environments of these bench stable Cu(III)-containing frameworks on multielectron transfer and electrochemical properties.  相似文献   

5.
Russian Journal of Electrochemistry - A series of Pt/TiO2–C catalysts containing platinum particles preferentially in the cubic form with the size of 6.7 nm uniformly distributed over the...  相似文献   

6.
Metal–organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E-MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E-MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E-MOFs demonstrate excellent performance with surface state model in both co-reactant and annihilation ECL in aqueous medium. Compared with the individual components, E-MOFs significantly improve the ECL emission due to the framework structure. The self-enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre-reduction electrolysis. The self-enhanced mechanism is theoretically identified by DFT. The mixed-ligand E-MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.  相似文献   

7.
Considerable attention has been paid to the utilization of CO2, an abundant carbon source in nature. In this regard, porous catalysts have been eagerly explored with excellent performance for photo-/electrocatalytic reduction of CO2 to high valued products. Metal–organic frameworks (MOFs), featuring large surface area, high porosity, tunable composition and unique structural characteristics, have been widely exploited in catalytic CO2 reduction. This Minireview first reports the current progress of MOFs in CO2 reduction. Then, a specific interest is focused on MOFs in photo-/electrocatalytic reduction of CO2 by modifying their metal centers, organic linkers, and pores. Finally, the future directions of study are also highlighted to satisfy the requirement of practical applications.  相似文献   

8.
Freshwater scarcity is a global challenge threatening human survival, especially for people living in arid regions. Sorption-based atmospheric water harvesting (AWH) is an appealing way to solve this problem. However, the state-of-the-art AWH technologies have poor water harvesting performance in arid climates owing to the low water sorption capacity of common sorbents under low humidity conditions. We report a high-performance composite sorbent for efficient water harvesting from arid air by confining hygroscopic salt in a metal–organic framework matrix (LiCl@MIL-101(Cr)). The composite sorbent shows 0.77 g g−1 water sorption capacity at 1.2 kPa vapor pressure (30 % relative humidity at 30 °C) by integrating the multi-step sorption processes of salt chemisorption, deliquescence, and solution absorption. A highly efficient AWH prototype is demonstrated with LiCl@MIL-101(Cr) that can enable the harvesting of 0.45–0.7 kg water per kilogram of material under laboratory and outdoor ambient conditions powered by natural sunlight without optical concentration and additional energy input.  相似文献   

9.
Constructing architectures with hierarchical porosity has been widely considered as the most efficient way to bypass the problems related to slow mass transfer and inaccessibility of internal space in MOFs. Now, a crystal-growth-dominated strategy is proposed to fabricate hierarchically porous MOFs (HP-MOFs). When the crystal growth is dominated by the monomer attachment, the aggregation of nonionic surfactant or polymer can be easily captured and released during the crystal growth process, resulting in the formation and ordering hierarchical pores along the radial direction. Owing to the accelerated mass diffusion and more exposed active sites of this design, HP-MOFs exhibited an enhanced catalytic efficiency in styrene oxidation.  相似文献   

10.
Acetylene (C2H2) capture is a step in a number of industrial processes, but it comes with a high-energy footprint. Although physisorbents have the potential to reduce this energy footprint, they are handicapped by generally poor selectivity versus other relevant gases, such as CO2 and C2H4. In the case of CO2, the respective physicochemical properties are so similar that traditional physisorbents, such as zeolites, silica, and activated carbons cannot differentiate well between CO2 and C2H2. Herein, we report that a family of three isostructural, ultramicroporous (<7 Å) diamondoid metal–organic frameworks, [Cu(TMBP)X] (TMBP=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), TCuX (X=Cl, Br, I), offer new benchmark C2H2/CO2 separation selectivity at ambient temperature and pressure. We attribute this performance to a new type of strong binding site for C2H2. Specifically, halogen ⋅⋅⋅ HC interactions coupled with other noncovalent in a tight binding site is C2H2 specific versus CO2. The binding site is distinct from those found in previous benchmark sorbents, which are based on open metal sites or electrostatic interactions enabled by inorganic fluoro or oxo anions.  相似文献   

11.
Multi-component MOFs contain multiple sets of unique and hierarchical pores, with different functions for different applications, distributed in their inter-linked domains. Herein, we report the construction of a class of precisely aligned flexible-on-rigid hybrid-phase MOFs with a unique rods-on-octahedron morphology. We demonstrated that hybrid-phase MOFs can be constructed based on two prerequisites: the partially matched topology at the interface of the two frameworks, and the structural flexibility of MOFs with acs topology, which can compensate for the differences in lattice parameters. Furthermore, we achieved domain selective loading of multiple guest molecules into the hybrid-phase MOF, as observed by scanning transmission electron microscopy–energy-dispersive X-ray spectrometry elemental mapping. Most importantly, we successfully applied the constructed hybrid-phase MOF to develop a dual-drug delivery system with controllable loading ratio and release kinetics.  相似文献   

12.
Two novel two-dimensional metal–organic frameworks (2D MOFs), 2D-M2TCPE (M=Co or Ni, TCPE=1,1,2,2-tetra(4-carboxylphenyl)ethylene), which are composed of staggered (4,4)-grid layers based on paddlewheel-shaped dimers, serve as heterogeneous photocatalysts for efficient reduction of CO2 to CO. During the visible-light-driven catalysis, these structures undergo in situ exfoliation to form nanosheets, which exhibit excellent stability and improved catalytic activity. The exfoliated 2D-M2TCPE nanosheets display a high CO evolution rate of 4174 μmol g−1 h−1 and high selectivity of 97.3 % for M=Co and Ni, and thus are superior to most reported MOFs. The performance differences and photocatalytic mechanisms have been studied with theoretical calculations and photoelectric experiments. This study provides new insight for the controllable synthesis of effective crystalline photocatalysts based on structural and morphological coregulation.  相似文献   

13.
The synthesis of molecular-level artificial switchable catalysts, of which activity in different chemical processes can be switched by controlling different stimuli, has provided a new paradigm to perform mechanical tasks and measurable work. In this work, to obtain highly effective and regioselective artificial switchable catalysts, a hierarchical anion-pillared framework {(H3O)[Cu(CPCDC)(4,4′-bpy)]}n ( 1 ; H3CPCDC=9-(4-carboxyphenyl)-9H-carbazole-3,6-dicarboxylic acid, 4,4′-bpy=4,4′-bipyridine), including free [H3O]+ ions as guest molecules, was constructed. Upon dissolve–exchange–crystallization behavior, fascinating reversible structural transformations proceeded between anion framework 1 and neutral 2D stair-stepping framework {[Cu(CPCDC)(4,4′-bpe)]}n ( 2 ; 4,4′-bpe=4,4′-vinylenedipyridine). Moreover, frameworks 1 and 2 can act as heterogeneous artificial switchable catalysts to selectively promote the direct cyanation reaction of terminal alkynes and azobisisobutyronitrile. The results indicated that 1 and 2 exhibited excellent selectivity to generate vinyl isobutyronitrile skeletons or propiolonitrile frameworks, respectively, as unique products. Furthermore, indicating paper, GC-MS, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis demonstrated that the reversible structural transformations endowed 1 and 2 with well-defined platforms to stabilize the isobutyronitrile and CN sources through the different catalytic pathways.  相似文献   

14.
15.
To increase the red blood cell (RBC) cryopreservation efficiency by metal–organic frameworks (MOFs), a dimensional reduction approach has been proposed. Namely, 3D MOF nanoparticles are progressively reduced to 2D ultra-thin metal–organic layers (MOLs). We found that 2D MOLs are beneficial for enhanced interactions of the interfacial hydrogen-bonded water network and increased utilization of inner ordered structures, due to the higher surface-to-volume ratio. Specifically, a series of hafnium (Hf)-based 2D MOLs with different thicknesses (monolayer to stacked multilayers) and densities of hydrogen bonding sites have been synthesized. Both ice recrystallization inhibition activity (IRI) and RBCs cryopreservation assay confirm the pronounced better IRI activity and excellent cell recovery efficiency (up to ≈63 % at a very low concentration of 0.7 mg mL−1) of thin-layered Hf-MOLs compared to their 3D counterparts, thereby verifying the dimensional reduction strategy to improved cryoprotectant behaviors.  相似文献   

16.
Wang  Deqiang  Li  Zuoji  Zhao  Qian  Zhang  Jianguo  Yang  Guang  Liu  Hui 《Journal of Cluster Science》2021,32(5):1175-1183

Developing artificial enzyme mimetics for the detection of small biomolecules are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. Herein, a heteropoly acids (HPA) encapsulating metal–organic framework (MOF) with metal-carbene structure, [Cu10(H3trz)4(Htrz)4][PMo12VO41] (PMA-MOF) as bifunctional enzyme-mimetic catalyst for colorimetric detection of hydrogen peroxide (H2O2) and ascorbic acid (AA) was designed and synthesized. Thanks to the good stability and the synergistic effect of PMA and MOF, PMA-MOF exhibits the lower limit of detection (0.222 μM towards H2O2 and 0.0046 μM to AA), and the smaller Km value (0.0138 mM for H2O2 and 0.136 mM for o-phenylenediamine) compared to most reported MOF- and HPA-based enzyme-mimetic catalyst, to the best our knowledge.

  相似文献   

17.
A cage-based metal–organic framework (Ni-NKU-101) with biphenyl-3,3’,5,5’-tetracarboxylic acid was synthesized via solvothermal method. Ni-NKU-101 contains two types of cages based on trinuclear and octa-nuclear nickel-clusters that are connected with each other by the 4-connected ligands, to form a 3D framework with a new topology. A mixed-metal strategy was used to synthesize isostructural bimetallic MOFs of MxNi1-x-NKU-101 (M=Mn, Co, Cu, Zn). The electrocatalytic studies showed that the hydrogen evolution reaction (HER) activity of CuxNi1-x-NKU-101 is much higher than that of other MxNi1-x-NKU-101 catalysts in acidic aqueous solution, owing to the synergistic effect of the bimetallic centers. The optimized Cu0.19Ni0.81-NKU-101 has an overpotential of 324 mV at 10 mA cm−2 and a Tafel slope of 131 mV dec−1. The mechanism of HER activity over these bimetallic MOF-based electrocatalysts are discussed in detail.  相似文献   

18.
Metal–organic frameworks (MOFs), with diverse metal nodes and designable organic linkers, offer unique opportunities for the rational engineering of semiconducting properties. In this work, we report a mixed-linker conductive MOF system with both tetrathiafulvalene and Ni-bis(dithiolene) moieties, which allows the fine-tuning of electronic structures and semiconductive characteristics. By continuously increasing the molar ratio between tetrathiafulvalene and Ni-bis(dithiolene), the switching of the semiconducting behaviors from n-type to p-type was observed along with an increase in electrical conductivity by 3 orders of magnitude (from 2.88×10−7 S m−1 to 9.26×10−5 S m−1). Furthermore, mixed-linker MOFs were applied for the chemiresistive detection of volatile organic compounds (VOCs), where the sensing performance was modulated by the corresponding linker ratios, showing synergistic and nonlinear modulation effects.  相似文献   

19.
Metal–organic frameworks (MOFs) are considered ideal membrane candidates for energy-efficient separations. However, the MOF membrane amount to date is only a drop in the bucket compared to the material collections. The fabrication of an arbitrary MOF membrane exhibiting inherent separation capacity of the material remains a long-standing challenge. Herein, we report a MOF modular customization strategy by employing four MOFs with diverse structures and physicochemical properties and achieving innovative defect-free membranes for efficient separation validation. Each membrane fully displays the separation potential according to the MOF pore/channel microenvironment, and consequently, an intriguing H2/CO2 separation performance sequence is achieved (separation factor of 1656–5.4, H2 permeance of 964–2745 gas permeation unit). Taking advantage of this strategy, separation performance can be manipulated by a non-destructive modification separately towards the MOF module. This work establishes a universal full-chain demonstration for membrane fabrication-separation validation-microstructure modification and opens an avenue for exclusive customization of membranes for important separations.  相似文献   

20.
Covalent organic frameworks(COFs), as a class of crystalline porous materials with periodic lattices and porous structures, have received extensive attention in the fields of gas storage and separation, energy storage, catalysis and optoelectronics and so on. However, COFs are still in their infancy in the field of nuclear waste treatment, especially for sequestration of long-live problematic radionuclides, such as 99Tc. Battle of decontamination of pertechnetate(TcO4), a main existence of 99Tc under aerobic environments, is far from finished. In this review, recent progresses of COFs and some relative materials in the sequestration of pertechnetate, and perspective on surmounting the unmet issues are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号