首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The polymerization kinetics of 5‐[2‐{2‐(2‐methoxyethoxy)ethyoxy}‐ethoxymethyl]‐5‐methyl‐trimethylene carbonate (TMCM‐MOE3OM) synthesized using the organocatalyst 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) were studied and compared to those with the commonly used catalyst/initiator for ring‐opening polymerization of cyclic carbonates and esters, stannous 2‐ethylhexanoate. Further, the utility of each of these catalysts in the copolymerization of TMCM‐MOE3OM with trimethylene carbonate (TMC) and l ‐lactide (LLA) was examined. Regardless of conditions with either catalyst, homopolymerization of TMCM‐MOE3OM yielded oligomers, having number average molecular weight less than 4000 Da. The resultant molecular weight was limited by ring‐chain equilibrium as well as through monomer autopolymerization. Interestingly, autopolymerization of TMC was also achieved with DBU as the catalyst. Copolymerization with TMC using stannous 2‐ethylhexanoate as the catalyst yielded random copolymers, while diblock copolymers were formed by copolymerization with LLA. With DBU as the catalyst, copolymers with LLA could not be formed, while blocky copolymers were formed with TMC. These findings should be useful in the incorporation of this monomer in the design of polymer biomaterials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 544–552  相似文献   

2.
The synthesis of poly(trimethylene carbonate) via carbene catalyzed ring‐opening polymerization (ROP) was investigated. The N‐heterocyclic carbenes were protected as CO2‐adducts to improve their handling (e.g., carbene generation without base). The influence of catalyst structure, different solvents and microwave radiation on conversion, molecular weight and end groups was investigated to gain an insight into the reaction mechanism. Different NHC structures were investigated for their catalytic activity toward the ROP of trimethylene carbonate. The analytic studies were performed by using NMR spectroscopy, SEC and ESI‐IMS mass spectrometry. It was found that the reaction can be performed in acetonitrile, toluene, THF and CH2Cl2. Synthesis in CH2Cl2 allows the best control over the resulting polymer with regards to polydispersity and molecular weight. Microwave radiation accelerates the reaction at 80 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 820–829  相似文献   

3.
4.
Rare‐earth (Nd, Y) ptert‐butylcalix[n]arene (n = 4, 6, and 8) complexes without coligands were synthesized from rare‐earth isopropoxides in toluene. The products were characterized as the following structures: [C4(OH)O3 · CH3C6H5]Nd ( 4 ), [C6(OH)2O4 · CH3C6H5]3Ln4 [Ln = Nd ( 5 ), Y ( 6 )], and [C8(OH)2O6 · CH3C6H5]Nd2 ( 7 ). 2,2‐Dimethyl trimethylene carbonate (DTC) can be polymerized with complexes 4 – 7 alone as the initiator. PolyDTC (weight‐average molecular weight: 5700, polydispersity index: 1.11, measured by gel permeation chromatography) initiated by complex 5 was obtained with a conversion of 69.1% within 6 h in toluene at 80 °C. The thermal behavior of polyDTC has been compared with the published data. The DTC ring is opened via acyl‐oxygen bond cleavage with end‐group examination. NMR analyses of the polymerization reaction mixture indicated that the polymerization proceeds via a coordination‐insertion mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1390–1399, 2003  相似文献   

5.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
This article presents the results of TMC and DMC polymerization with the use of acetylacetonates of low‐toxic metals: iron, zinc, and zirconium. Zinc (II) acetylacetonate proves to be a very good initiator of homopolymerization. The reaction carried out with the use of this initiator at 110 °C is very rapid and of high yield. Using both zinc and iron (III) acetylacetonates, as well as the zirconium (IV) one, in high temperatures it is possible to obtain PTMC possessing high molecular mass, thus ensuring optimization of the relation between the duration of the polymerization and its yield. A strong influence of thermal degradation on the course of the reaction has been observed, particularly at 160 °C, with the use of Fe(acac)3 as the initiator. DMC polymerization proceeds much more slowly when initiated by iron and zinc acetylacetonates. A high conversion of the monomer is obtained in this case as well. The relation between the molecular mass of the obtained PDMC and the conversion of the monomer is directly proportional; however, those masses, determined on the basis of polystyrene standards, are much lower than those estimated theoretically. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1913–1922, 2005  相似文献   

7.
Cyclobutenes containing pendant groups of varying sizes were polymerized via ring opening metathesis polymerization using Grubbs catalyst 2nd generation (G2). The rate of polymerization depended on the size of the pendant groups attached to the cyclobutene rings, with longer side‐chains producing slower polymerization rates and narrower molecular weight distributions. The polymerization of these new molecules proceeded with first order kinetics, consistent with a living polymerization. Chain extension experiments produced cyclobutene‐based diblock copolymers with polydispersity indices below 1.33. The synthetic methods in this report will allow the use of G2 to access new complex polymeric architectures with a higher density of pendant groups than those derived from norbornene analogs and cyclooctene moieties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1929–1939  相似文献   

8.
Ring‐opening polymerization (ROP) of monofunctional neopentylglycol carbonate (NPGC) with or without bifunctional di(trimethylolpropane) carbonate (DTMPC), which are derived from available corresponding alcohols, affords linear polycarbonates or covalently‐linked polycarbonate networks, respectively. A series of available ethanol amine derivatives having the different numbers of 2‐hydroxylethyl arms (N,N,N’,N’‐tetrakis(2‐hydroxyethyl)ethylenediamine, triethanolamine, N‐methyldiethanolamine or N,N‐dimethylethanolamine) initiates the ROP of NPGC to afford star‐shaped, telechelic, or linear polycarbonates bearing tertiary amines with well‐controlled molecular weights and relatively narrow polydispersities Furthermore, the copolymerization of NPGC and DTMPC in the presence of these initiators readily gives tertiary amine‐modified polycarbonate films with well transparency and flexibility. These amino groups are easily converted to ammonium salts by protonation with acids, while the quaternization with benzyl bromide is strongly affected by the steric hindrance of these amines. N‐Methyldiethanolamine or N,N‐dimethylethanolamine residues in these films react easily with benzyl bromide to give quaternary ammonium salt‐functionalized films. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 487–497  相似文献   

9.
Microwave‐assisted ring‐opening polymerization (MROP) of trimethylene carbonate in the presence of 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) ionic liquid was investigated. In the presence of 5 wt % [bmim]BF4, poly (trimethylene carbonate) (PTMC) with a number‐average molar mass (Mn) of 36,400 g/mol was obtained at 5 W for only 60 min. The Mn of PTMC synthesized in the presence of [bmim]BF4 was much higher than that produced in bulk at the same reaction time. In addition, compared with those produced by conventional heating, the Mn of PTMC and monomer conversion by MROP with or without [bmim]BF4 were both higher. Thermal properties of the resulting PTMC were characterized by differential scanning calorimetry. Under microwave irradiation in the presence of ionic liquid, the polymerization could be carried out efficiently and effectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5857–5863, 2007  相似文献   

10.
This work deals with the cationic ring‐opening polymerization of cyclic thiocarbonates with a norbornene or norbornane moiety, that is, 5,5‐(bicyclo[2.2.1]hept‐2‐ene‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC1 ) or 5,5‐(bicyclo[2.2.1]heptane‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC2 ), respectively. The reaction of TC1 initiated by trifluoromethanesulfonic acid (TfOH), methyl trifluoromethanesulfonate (TfOMe), boron trifluoride etherate (BF3OEt2), or triethyloxonium tetrafluoroborate (Et3OBF4) afforded unidentified products; however, TC1 underwent cationic ring‐opening polymerization with methyl iodide as an initiator to afford polythiocarbonate because the propagating end was stabilized by the covalent‐bonding property. The polymerization of TC2 initiated by TfOH, TfOMe, BF3OEt2, or Et3OBF4 afforded polythiocarbonate with good solubility in common organic solvents and a narrow molecular weight distribution because of the absence of a double‐bond moiety. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1698–1705, 2002  相似文献   

11.
Six-membered cyclic carbonates, namely trimethylene carbonate (TMC), 3,3-dimethoxytrimethylene carbonate (DMTMC) and 3-benzyloxytrimethylene carbonate (BTMC), undergo controlled "immortal" ring-opening polymerization (iROP) under mild conditions (bulk, 60-150 °C), by using organocatalysts, including an amine [4-N,N-dimethylaminopyridine (DMAP)], a guanidine [1,5,7-triazabicyclo-[4.4.0]dec-5-ene (TBD)], or a phosphazene [2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP)], in the presence of an alcohol [benzyl alcohol (BnOH), 1,3-propanediol (PPD), glycerol (GLY)] that acts as both a co-initiator and a chain-transfer agent. Remarkably, such organocatalysts remain highly active in the iROP of technical-grade, unpurified TMC. Under optimized conditions, as much as 100,000 equivalents of TMC were fully converted by as little as 10 ppm of BEMP with the simultaneous growth of as many as 200 polymer chains, allowing the preparation of high molar mass poly(trimethylene carbonate)s (up to 45,800 g mol(-1)). These catalyst systems enable among the highest activities (TOF=55,800 h(-1)) and productivities (TON=95,000) ever reported for the ROP of TMC.  相似文献   

12.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

13.
14.
Ring opening polymerization of propylene oxide in the presence of a new type of catalytic system composed of chitosan-supported rare earth complex, triisobutyl aluminium, and acetylacetone and its kinetics have been studied for the first time. It has been found that the characteristics of this catalytic system are of high catalytic activity, of higher stereoselectivity, and of a high molecular weight polymer of 2 × 106. Kinetic studies show that the polymerization rate is first order with respect to monomer concentration and catalyst concentration, respectively. The apparent activation energy of the polymerization reaction is 37.1 kJ/mol. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2177–2182, 1997  相似文献   

15.
The ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) using imidodiphosphoric acid (IDPA) as the organocatalyst and benzyl alcohol (BnOH) as the initiator has been investigated. The polymerization proceeded without decarboxylation to afford poly(trimethylene carbonate) (PTMiC) with controlled molecular weight and narrow polydispersity. 1H NMR, SEC, and MALDI‐TOF MS measurements of the obtained PTMC clearly indicated the quantitative incorporation of the initiator at the chain end. The controlled/living nature for the IDPA‐catalyzed ROP of TMC was confirmed by the kinetic and chain extension experiments. A bifunctional activation mechanism was proposed for IDPA catalysis based on NMR and FTIR studies. Additionally, 1,3‐propanediol, 1,1,1‐trimethylolpropane, and pentaerythritol were used as di‐ol, tri‐, and tetra‐ol initiators, producing the telechelic or star‐shaped polycarbonates with narrow polydispersity indices. The well‐defined diblock copolymers, poly(trimethylene carbonate)‐block‐poly(δ‐valerolactone) and poly(trimethylene carbonate)‐block‐poly(ε‐caprolactone), have been successfully synthesized by using the IDPA catalysis system. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1009–1019  相似文献   

16.
Polymerization of a trimethylene carbonate (TMC) in an aqueous solution was investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. The polymerization reaction proceeded rapidly in the aqueous solution and high conversion was achieved in a relatively short time. 1,3‐Propanediol (PPD) formed by hydrolysis of TMC was used as the initiator. The TMC oligomer obtained by ring‐opening polymerization had a TMC unit backbone with terminal 3‐hydroxypropyl groups at both chain ends. The oligomer underwent transesterification reaction with elimination of PPD, resulting in a gradual increase in the molecular weight of the product. The molecular weight was affected by the concentration of TMC. The thermal properties of the polymers were investigated by differential scanning calorimetry. Polymers within the molecular weight (Mn) range from 6.0 × 103 to 2.3 × 104 g/mol crystallized, and endothermic peaks corresponding to the melting temperature were observed. The glass transition temperature increased with the molecular weight of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1485–1492, 2010  相似文献   

17.
An ionic liquid, 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium bis(trifluoromethanesulfonyl)imide (OXImTFSI), was synthesized, and its cationic polymerization was examined. The heating of a mixture of 1‐ethylimidazole and 3‐chloromethyl‐3‐ethyloxetane at 90 °C for 48 h yielded 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium chloride, which was transformed to a room‐temperature ionic liquid, OXImTFSI, by ion exchange with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). This ionic liquid was polymerized using boron trifluoride ethyl ether complex as a catalyst to give polyOXImTFSI. Five percent weight loss temperature (Td5) of polyOXImTFSI evaluated by thermal gravimetric analysis was 409 °C, indicating the high thermal stability. Glass transition temperature (Tg) of the polymer evaluated by differential scanning calorimetry was ?19 °C, indicating the high flexibility of the material. Ionic conductivity of polyOXImTFSI was determined to be 1.86 × 10?8 S/cm at 23 °C, which was far lower than that of the OXImTFSI monomer (5.05 × 10?4 S/cm). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2986–2990  相似文献   

18.
Polyesters and poly(ester carbonates) were synthesized via ring‐opening polymerization with new tin(II) macroinitiator adducts containing oligomeric L ‐lactide (LLA), rac‐lactide (rac‐LA), and ?‐caprolactone (CL). The novel initiating species were synthesized by the reaction of LLA, rac‐LA, or CL with Sn(OEt)2 (monomer concentration/initiator concentration ≤20) and then were dissolved in methylene chloride or toluene and stored in a stoppered flask for the subsequent ring‐opening polymerization of cyclic esters and carbonates. The soluble tin alkoxide macroinitiators yielded predictable and quantitative initiation of polymerization for up to 1 month of storage time at room temperature. The resulting polymers displayed low polydispersity (≤1.5), and a high monomer conversion (>95%) was obtained within relatively short polymerization times (≤2 h). Adjusting the monomer/macroinitiator ratio effectively controlled the molecular weights of the polymers. NMR was used to characterize the initiating species and polymer microstructure, and size exclusion chromatography was used to determine the molecular weight properties of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3434–3442, 2002  相似文献   

19.
3,3‐Disubstituted oxetane monomers were found to undergo rapid, exothermic redox initiated cationic ring‐opening polymerization in the presence of a diaryliodonium or triarylsulfonium salt oxidizing agent and a hydrosilane reducing agent. The redox reaction requires a noble metal complex as a catalyst and several potential catalysts were evaluated. The palladium complex, Cl2(COD)PdII, was observed to provide good shelf life stability while, at the same time, affording high reactivity in the presence of a variety of hydrosilane reducing agents. A range of structurally diverse oxetane monomers undergo polymerization under redox cationic conditions. When a small amount of an alkylated epoxide was added as a “kick‐start” accelerator to these same oxetanes, the redox initiated cationic polymerizations were extraordinarily rapid owing to the marked reduction in the induction period. A mechanistic interpretation of these results is offered. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1854–1861  相似文献   

20.
Thermally induced ring‐opening polymerization of monofunctional N‐allyl‐1,3‐benzoxazine 1a was compared with that of N‐(n‐propyl)‐1,3‐benzoxazine 1b to clarify an unexpected effect of allyl group to promote the polymerization, that is, in spite of the comparable bulkiness of allyl group to n‐propyl group, the polymerization of 1a was much faster than that of 1b . Such a difference in polymerization rate was also observed similarly in the comparison of thermally induced polymerization of a bifunctional N‐allyl‐benzoxazine 2a with that of a bifunctional N‐(n‐propyl) analogue 2b . These observations implied a certain contribution of an electron‐rich C? C double bond of the N‐ally group to promotion of the ring‐opening reaction of 1,3‐benzoxazine into the corresponding zwitterionic species, which would involve a mechanism to stabilize the cationic part of the zwitterionic species based on “neighboring group participation” of the C? C double bond. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号