首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10~(-4) to 1×10~(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.  相似文献   

2.
Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.  相似文献   

3.
In this paper the results of studying of the electron temperature of buffer and complex plasmas in mixtures of noble gases (helium + argon) in capacitively coupled radiofrequency (CCRF) discharge are presented. The optical properties of dusty plasma in argon, helium and their mixtures have been studied using optical diagnostic methods. Based on spectral lines of plasma forming gases, the dependence of the electron temperature on gas pressure and discharge power has been determined. The axial distribution of electron temperature in the interelectrode gap has been measured. Measurements have been made using an RF compensated electric probe. The comparison of the experimental results shows that admixture of a small amount of argon to helium leads to a decrease in the electron temperature of buffer plasma. The presence of dust particles in the plasma causes an increase in the electron temperature. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Yasui K 《Ultrasonics》2002,40(1-8):643-647
Computer simulations of bubble oscillations in water are performed for various noble gases taking into account the segregation of water vapor and noble gas inside a collapsing bubble, which was predicted by Storey and Szeri [J. Fluid Mech. 396 (1999) 203]. It is clarified that the number of water vapor molecules dissociated inside a collapsing bubble is larger for heavier noble gases because of the lower thermal conductivity and the segregation of vapor and noble gas. It is also clarified that the temperature inside a helium bubble at the collapse increases considerably by the mixture segregation because a lesser amount of vapor is trapped inside a collapsing bubble. It is also clarified that multibubble sonoluminescence (MBSL) from heavier noble gases is brighter because of the lower ionization potential which results in the higher electron density and stronger plasma emissions.  相似文献   

5.
Some easy to use reasonable approximations for electron impact rate coefficients have been considered. The most important rate coefficients for electron collisions in noble gases are electron-neutral ionization and electron impact excitation. Electron-neutral ionization besides electron impact excitation of some states of the argon and helium atom in direct current (dc) glow discharge plasma has been calculated. The plasma parameters of electron are significant factors for computing the rate coefficients. We present first results of probe diagnostic that includes the double probe measurements of the plasma parameters, namely, electron temperature (Te) and electron density (ne). Electron properties obtained from the double probe characteristic curves including Te and ne as well as the calculated rate coefficients (ionization and excitation) were studied as a function of the axial distance from the cathode while the discharge operating parameters of voltage and pressure were varied. Two regions of the glow discharge were investigated: cathode fall region and negative glow. Particular emphasis was placed on the negative glow region.  相似文献   

6.
The application of the Lorentzian plasma theory for the calculation of the properties of multicomponent electric arc plasma is considered. It is shown that this model gives satisfactory results in the temperature range, which is corresponding to the weakly ionized arc plasma and arc plasma with dominant first ionization. The calculations are provided for the arc plasmas of noble gases and their mixtures between them and also that with metals. It is also pointed that the discrepancy between the electron temperature and gas temperature can be significant even at relatively weak electric fields, that fact must be taken into account under the simulation of arc discharges.  相似文献   

7.
By a Pulse Echoes Overlap Method, the speed of ultra sound has been worked out at 15 MHz for the complete noble gas series at temperature 298.15 K in a very wide density range (which corresponds at pressures up to 10 kbar for light noble gases). When the molar density and the isothermal compressibility coefficient are known, the ratio of specific heats can be deduced as a function of density. In the case of argon the evolution of both cp and cv has been obtained separately and a value of 3R is determined before the fluid-solid transition. These thermodynamical quantities have been compared with those derived from the numerical equation of state of Hansen for a Lennard-Jones fluid. One notices good agreement between predictions and experimental results for hot gases.  相似文献   

8.
On the basis of a foregoing paper new theoretical results for the positive column at low pressure and strong ionization, especially for discharges in noble gas ion lasers, are given. The mean velocity vn0 of the neutral atoms reemitted from the wall is taken into account. The electric conductivity is calculated for an argon plasma. The formulas connecting the electron temperature, the mean neutral gas density, and the electric field strength are derived. The electron temperature, the axial electric field intensity, the degree of ionization, the axial electron drift velocity, the ion flux to the wall, and the force density causing the main part of gas pumping along the column are calculated as functions of the product of the mean current density and the tube radius, and of vn0 for argon. The axial drift velocity of the electrons is still smaller than the mean thermal electron velocity for high discharge currents, except at very low gas pressures. In general, the ion flux to the wall is not directly proportional to the discharge current. The factor for the determination of the charged particle density by means of probe measurements at the wall is discussed. The self-magnetic field affects the discharge only at high electron temperature, high degree of ionization, and relatively large tube radius, i.e. at high current density and low gas pressure in not too narrow discharge channels.  相似文献   

9.
王一男  刘悦  郑殊  林国强 《中国物理 B》2012,21(7):75202-075202
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, the spices such as electron, N2+, N4+, Ar+, and two metastable states (N2 (A3u+), N2 (a1u-)) are taken into account. The model includes particle's continuity equations, electron's energy balance equation, and Poisson equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decrease.  相似文献   

10.
陆全康 《物理学报》1979,28(2):160-172
本文分析沿外磁场方向的等离子体川流激发回旋不稳定性的尼奎斯特图.阐述包含变量ns(川流等离子体的电子密度),n0(静止等离子体的电子密度),B(外磁场强度),k(波数),v(川流速度)与T(体系温度)的不稳定性判据的计算方法。具体算出氢等离子体的定量结果。为探讨不稳定区域的特征,还分析了有两支川流时的回旋与静电不稳定性。 关键词:  相似文献   

11.
We measured the main plasma parameters(density of electron,temperature of electron and ion confinement time)and beam intensity of various heavy ions as a function of B_(min).The B_(min) strongly affects the field gradient at the resonance zone,consequently the plasma parameters and beam intensity are changed. Based on these experimental results,we started to construct new 18GHz ECRIS and make a detailed design of the 28GHz SC-ECRIS for RIKEN RI beam factory project.  相似文献   

12.
Epitaxial Si growth at low temperatures (500–800 °C) by atmospheric pressure plasma chemical vapor deposition has been investigated. Silicon films are deposited on (001) Si wafers using gas mixtures containing He, H2, and SiH4. The effects of deposition parameters (composition of reactive gases, very high frequency (VHF) power, and substrate temperature) on film properties are investigated by reflection high-energy electron diffraction, atomic force microscopy, cross-sectional transmission electron microscopy, and plasma emission spectroscopy. It is found that epitaxial temperature can be reduced by increasing VHF power, and that an optimum range of VHF power exists for Si epitaxy, depending on the substrate temperature and the composition of the reactive gases. The result of the H2 concentration dependence of Hα emission intensity, shows that hydrogen atoms generated in the atmospheric pressure plasma play an important role in Si epitaxial growth. Under the optimized growth conditions, defect-free epitaxial Si films (as observed by transmission electron microscopy) with excellent surface flatness are grown at 500 °C with an average growth rate of approximately 0.25 μm/min. PACS 81.05.Cy; 81.15.Gh; 68.55.Jk  相似文献   

13.
不同磁路电子回旋共振离子源引出实验   总被引:1,自引:0,他引:1       下载免费PDF全文
金逸舟  杨涓  冯冰冰  罗立涛  汤明杰 《物理学报》2016,65(4):45201-045201
空间推进所用的电子回旋共振离子源(ECRIS)应具有体积小、效率高的特点. 本文研究的ECRIS使用永磁体环产生磁场, 有效减小了体积, 该离子源利用微波在磁场中加热电子, 电子与中性气体发生电离碰撞产生等离子体. 磁场在微波加热电子的过程中起关键作用, 同时影响离子源内等离子体的约束和输运. 通过比较四种磁路结构离子源的离子电流引出特性来研究磁场对10 cm ECRIS性能的影响. 实验发现: 在使用氩气的条件下, 特定结构的离子源可引出160 mA的离子电流, 最高推进剂利用率达60%, 最小放电损耗为120 W·A-1; 所有离子源均存在多个工作状态, 工作状态在微波功率、气体流量、引出电压变化时会发生突变. 离子源发生状态突变时的微波功率、气体流量的大小与离子源内磁体的位置有关. 通过比较不同离子源的引出离子束流、放电损耗、气体利用率、工作稳定性的差异, 归纳了磁场结构对此种ECRIS引出特性的影响规律, 分析了其中的机理. 实验结果表明: 保持输入微波功率、气体流量、引出电压不变时, 增大共振区的范围、减小共振区到栅极的距离, 离子源能引出更大的离子电流; 减小共振区到微波功率入口、气体入口的距离能降低维持离子源高状态所需的最小微波功率和最小气体流量, 提高气体利用率, 但会导致放电损耗增大. 研究结果有助于深化对此类离子源工作过程的认识, 为其设计和性能优化提供参考.  相似文献   

14.
Nonequilibrium plasmas with cesium metal vapor ionization in helium and argon gases at moderate pressures are excited with microwave power. The structures and behaviour of the seeded plasmas are experimentally examined, particularly under the condition of Full seed (cesium atoms) ionization. By cesium seeding, the minimum power sustaining the plasma is reduced markedly, and both a broad plasma observed in pure helium and unsteady filament-like plasmas in pure argon change to the steady and broad plasma locating close to the inner surface of a discharge tube, it is revealed from the electron temperature measurements that the plasma can be in the regime of full seed ionization for suitable microwave powers, where the electron density is kept almost constant. The thickness of the fully ionized seed (FIS) plasma decreases with increasing the mole fraction of cesium vapor, and is almost independent of noble gas pressure. The thickness almost coincides with the skin depth determined from the electrical conductivity almost uniform in the FIS plasma. These facts suggest that the FIS plasma will be easily produced and maintained as long as the microwave power is consumed to the electron heating  相似文献   

15.
The element specific electron configuration of ions directly reflects the two quantum mechanical observables 〈r2〉 and rmax, which denote the r2 expectation value of the electron density and the principle maximum of the wave function of the outermost electron orbital, respectively. Thus, the determination of these observables may present a new access to element identification of single superheavy nuclides. In this paper, we discuss how these observables are related to ionic radii deduced from ion-mobility data using the most simple hard sphere model and semi-empirical (n,6,4) model potentials for the interaction of heavy ions with noble gases. A concept for a high resolution ion-mobility spectrometer is presented. Optimum extraction efficiency of the ions will be achieved by decoupling the ion motion from the electric field drift by the friction force of the suitably shaped gas flow at the exit nozzle.  相似文献   

16.
The necessity of a three-dimensional simulation of the extraction has been accepted for electron cyclotron resonance ion sources (ECRIS) as well as for negative ion sources. For an ECRIS, the magnetic hexapole together with the solenoidal mirror field defines a minimum B structure which confines the plasma. Depending on the magnetic flux density distribution, the plasma density in front of the extraction electrode might be non-homogeneous. In H?-sources, magnetic filter fields are used to separate electrons with different energies or to separate electrons from negative ions. These magnetic filters influence the ions as well. Besides these asymmetry effects other quantities have to be considered, namely the correct formulation of initial conditions of all present charged particles. For ECRIS the initial conditions for ions are assumed to be in the electronvolt range, whereas it can be in the kilo electronvolt range for laser ion sources. Another quantity of interest is the electron energy and the distribution of electrons in real space and their movability if magnetic fields are present.  相似文献   

17.
Coefficients for volume recombination and ionization have been calculated for a dense helium plasma of low degree of ionization. The calculations are based on a collisional-radiative model in which electron-atom, electron-electron-ion, atom-atom, and electron-atom-ion collisions intervene. Molecular species such as He 2 * and He 2 + have not been taken into account. The essential results are: At low temperatures and high neutral gas densities the recombination coefficient is proportional to the number density of neutral helium atoms. At high temperatures the presence of neutral particles practically does not influence the recombination process compared to pure ion-electron-electron recombination. At high neutral particle densities, high atom temperatures and low electron densities the ionization process is mainly due to atom-atom collisions. In this point our calculations are in relatively good agreement with recent shock tube measurements of Kalra and Measures (Phys. Fluids14, 2544 (1971)). It is emphasized that the simple two-step model for ionization by shock waves in the noble gases should be replaced by a more general collisional-radiative model in which the atomic level structure intervenes in more detail.  相似文献   

18.
螺旋波激发氢等离子体光谱诊断   总被引:4,自引:3,他引:1       下载免费PDF全文
 利用螺旋波等离子体化学气相沉积(HWP-CVD)技术,以氢气为反应气体产生等离子体。通过采集氢的可见到紫外发射光谱,对等离子体进行了原位诊断,由氢Balmer系分析得到了不同实验参数对激发态氢原子相对密度的影响,通过对Fulcher带的分析,得到实验参数对氢振动温度的影响。结果表明:低压氢等离子体状态可借用日冕模型来诊断;激发态氢原子密度随入射功率增加而增加,随压强增加而减少,氢分子振动温度随压强增加先增大后减小;电子温度和电子密度是低压氢等离子体状态变化的关键因素。  相似文献   

19.
黏度是能源、动力、化工等系统设计分析中常用的重要物性参数.本文探讨了5种惰性气体(He、Ne、Ar、Kr、Xe)气相和超临界黏度的计算,以实际气体与同温度稀薄气体的黏度之比作为无量纲对比黏度,发现5种惰性气体的无量纲对比黏度与剩余熵之间满足同一单值函数关系,据此建立了惰性气体的气相和超临界黏度模型,其中稀薄气体黏度关联...  相似文献   

20.
高重复率铜蒸汽激光的充氢机制   总被引:5,自引:3,他引:2       下载免费PDF全文
程成  孙威 《物理学报》1997,46(5):897-907
通过数值求解时空自洽的铜蒸汽激光动力学方程,详细研究了铜激光的充氢机制.少量充氢提高激光功率的原因是:1)氢具有的大热导率使管壁温度升高,铜粒子数密度增加;2)充氢增加了电子与氢的动量输运碰撞,使放电电流减小.当电源功率一定时,闸流管的功率损耗减小,输入激光管的功率增大.此外,充氢过多(大于(1—2)%氖),通过电子碰撞激发氢分子振动能级,使电子温度和电子密度下降较大,电子没有足够的能量密度激励激光能级,导致激光功率下降 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号