首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Carbon-based nanomaterials are gaining more and more interest because of their wide range of applications. Carbon dots (CDs) have shown exclusive interest due to unique and novel physicochemical, optical, electrical, and biological properties. Since their discovery, CDs became a promising material for wide range of research applications from energy to biomedical and tissue engineering applications. At same time several new methods have been developed for the synthesis of CDs. Compared to many of these methods, the sonochemical preparation is a green method with advantages such as facile, mild experimental conditions, green energy sources, and feasibility to formulate CDs and doped CDs with controlled physicochemical properties and lower toxicity. In the last five years, the sonochemically synthesized CDs were extensively studied in a wide range of applications. In this review, we discussed the sonochemical assisted synthesis of CDs, doped CDs and their nanocomposites. In addition to the synthetic route, we will discuss the effect of various experimental parameters on the physicochemical properties of CDs; and their applications in different research areas such as bioimaging, drug delivery, catalysis, antibacterial, polymerization, neural tissue engineering, dye absorption, ointments, electronic devices, lithium ion batteries, and supercapacitors. This review concludes with further research directions to be explored for the applications of sonochemical synthesized CDs.  相似文献   

2.
将荧光碳点引入透明斑马鱼胚胎中,研究了荧光碳点在斑马鱼中的活体成像和对斑马鱼的毒副作用。通过对水中添加荧光碳纳米颗粒,从形态上观察其对于斑马鱼个体发育的生物学效应,实时观察其在斑马鱼体内富集代谢的情况,为荧光碳点及其复合物在生物活体成像方面的研究应用奠定基础。结果表明,荧光碳点对斑马鱼生长发育无明显的毒副作用,不会导致胚胎发育异常(通过观察尾巴弯曲情况、色素深浅、血管发育速度、鱼鳔发育速度来确定对胚胎发育的影响),并且对斑马鱼无明显致死现象。荧光碳点进入斑马鱼体内的时间非常迅速,并且可以在48 h之内经代谢排出体外。  相似文献   

3.
碳点(CDs)作为一种新型的零维碳基纳米材料,由于其优异的荧光性质、良好的生物兼容性、低细胞毒性以及丰富的表面官能团等性质,在荧光传感和生物医学领域具有巨大的应用潜力。特别是针对肿瘤弱酸性的微环境特点,设计pH响应型碳点来实现对肿瘤的特异性治疗将尤为重要。本文对近年来基于pH响应型碳点的研究工作进行了系统的调研,综述了pH响应型碳点的荧光机制及其在pH传感、生物成像及癌症治疗等生物医学领域的应用,并对pH响应型碳点目前面临的主要挑战以及未来发展的方向进行了展望。  相似文献   

4.
荧光碳点具有激发波长依赖的独特性质,有望基于此制备检测溶液pH值的荧光探针。以柠檬酸和尿素为原料、N,N-二甲基甲酰胺为溶剂,采用一步溶剂热法在200℃下保温12 h制备了一种新型的具有橙-绿双波段荧光发射性能的水溶性碳点。采用透射电子显微镜、X射线衍射、拉曼光谱、傅里叶变换红外光谱和X射线光电子能谱等方法对荧光碳点的组成和形貌进行了表征,还通过荧光发射光谱和紫外-可见吸收光谱对其光学性能进行了研究。结果表明,制备的碳点粒径为2.7~4.3 nm,表面带有大量含氧官能团,具有良好的水分散性。在440 nm和540 nm波长光激发下分别呈现绿色(500 nm)和橙色(590 nm)双波段荧光发射。合成的荧光碳点发光性能对pH值具有敏感性:在强碱性溶液中,590 nm的荧光强度比水溶液中提高了6.71倍,同时吸收峰的蓝移使得自然光下其溶液颜色发生了明显改变,具有强碱性指示剂的作用;在pH值为2~6的酸性溶液中,500 nm与590 nm发光峰强度比与pH值之间呈现良好的线性关系,展现了作为pH值比率荧光探针的应用潜力。  相似文献   

5.
以壳聚糖为碳源通过水热法合成碳点,对影响碳点荧光强度的水热温度、水热时间和壳聚糖质量分数进行考察。通过紫外分光光度计、荧光分光光度计、原子力显微、Fourier红外光谱仪、X-ray光电子能谱、X射线衍射仪对壳聚糖碳点的光学性质、化学结构、晶体结构、形貌结构等进行表征分析。结果表明,在水热温度200℃、水热时间9 h、壳聚糖质量分数2%的条件下制备得到的壳聚糖碳点量子产率为32.86%。碳点呈现出主要尺寸为3~10 nm的球形颗粒状,且在波长335 nm激发下,发射峰位于410 nm(蓝)。对金属离子的选择性研究分析表明,Fe~(3+)对碳点溶液的荧光猝灭效应最显著,说明碳点对Fe~(3+)具有较好敏感性和高选择性,且荧光猝灭效率对Fe~(3+)浓度在0~100μmol/L范围内呈现线性响应,因此有望将碳点作为荧光探针应用于Fe~(3+)的检测表征。  相似文献   

6.
滕潇  周奕华  钱俊  邓亚峰  高文宇 《发光学报》2018,39(9):1246-1251
以乙二醇和丙三醇为碳源,用一元醇(异丙醇和乙醇)为对比,通过溶剂热法制备得到碳点。通过傅里叶红外光谱、紫外-可见吸收光谱和激发光谱对所制得的碳点进行表征和分析,探讨了不同碳源对碳点的表面官能团、荧光性能等的影响,从而分析其荧光的发光机理。结果表明:乙二醇与丙三醇制备的碳点含有C=C键和C=O键,均在365 nm光激发后在450 nm处有荧光峰;而一元醇是由C-OH基团中的孤对电子产生荧光,碳源分子中羟基含量对碳点的荧光性能有很大影响,羟基含量越高,越容易形成双键结构。  相似文献   

7.
Carbon‐based nanomaterials could afford versatile potential applications in biomedical optical imaging and as nanoparticle drug carriers, owing to their promising optical and biocompatible capabilities. In this paper, it is first found that amphipathic cetylpyridinium chloride (CPC)‐stabilized oil‐soluble carbon dots (CDs) could self‐assemble into hydrophilic CDs clusters with hydrophobic core under ultrasound, in which CPC acts as carbon source, stabilizer, and phase transfer agent. Next, the size‐control (for size‐dependent passive tumor targeting) and doxorubicin (DOX) uploading of aqueous CDs clusters, and subsequent surface charge modification via overcoating with cRGD‐ and octylamine‐modified polyacrylic acid (cRGD‐PAA‐OA) (reversing their surface charges into negative and introducing active tumor‐targeting ability) are explored systematically. Based on this sequential administration mode, CDs‐cluster‐DOX/cRGD‐PAA‐OA nanocomposites exhibit selective human malignant glioma cell line (U87MG) tumor targeting. In in vitro drug release experiments, the nanocomposites could release DOX timely. Owning to the dual tumor targeting effects and seasonable drug release, CDs‐cluster‐DOX/cRGD‐PAA‐OA show remarkably tumor targetability and enhanced antitumor efficacy (and reduced adverse reaction), comparing to free DOX in animal models. These results indicate that fabricating nanocomposite via co‐self‐assembly strategy is efficient toward drug delivery system for tumor‐targeting theranostic.  相似文献   

8.
The ability to precisely sense physiological pH changes in the cellular environment is exceedingly difficult. Novel technologies are thus required to address this challenge. Fluorescent nanomaterials can be exploited to this effect because their optical properties can exhibit strong pH dependence. Herein, an intracellular pH-sensing probe is developed via a facile microwave-reaction synthesis method for the preparation of carbon dots (CDs) using glutathione and formamide. The CDs possess unique optical properties allowing for concomitant fluorescence in the blue and red regions of the spectrum. These dots are investigated as pH-sensors using the red fluorescence signatures at 650 and 680 nm. The two fluorescence bands respond differently following pH changes in their environment and could thus be used for ratiometric measurements. Cytotoxicity studies of the CDs in glioblastoma cells show no decrease in cell viability up to 100 μg mL−1 (24 h). Fluorescence imaging reveals that the dots localize in lysosomal compartments. Moreover, they can sense changes in lysosomal pH in response to serum and amino acid starvation, as well as administration of diclofenac and metformin, drugs currently in clinical trials for combination treatments of cancer. These CDs offer a new self-referencing approach for live intracellular pH sensing in 2D- and 3D-cell models.  相似文献   

9.
With their unique optical and electronic properties, carbon dots (CDs) are showing great momentum in many fields such as biosensing, imaging, drug delivery, and photocatalysis. Due to their efficient light harvesting, extraordinary upconversion photoluminescence, and excellent photoinduced electron transfer capabilities, the combination of CDs with photocatalytic materials will promote light absorption resulting in increased generation of electron-hole pairs and faster photogenerated electron transfer, effectively suppressing the rate of electron-hole pair complexation and thus improving photocatalytic activity. In this paper, the mechanism of CDs photocatalysis and various photocatalytic materials such as TiO2, Bi-based, CdS, and g-C3N4 complexed with CDs are reviewed. It is hoped that research into CDs in the field of photocatalysis will be advanced and that CDs will be used more widely in environmental and energy applications.  相似文献   

10.
Developing total carbon-based multicolor emissive carbon dots (Cdots), especially amphiphilic Cdots (A-Cdots) with several luminescent bands and limited emissive sites, is still a challenge. Herein, A-Cdots with bright excitation-independent blue/yellow photoluminescence (PL) bands from two types of fluorophores are synthesized by the solvothermal treatment of citric acid and dodecylamine in cyclohexane (c-hexane) solution. Due to the hydrogen-bonding interaction of carboxylic groups linked with A-Cdots and the hydrophobic effects of long-chain alkyl groups, assemblies of A-Cdots with reversed micelle-like structure formed in c-hexane solution lead to remarkable yellow-PL (y-PL) with quantum yield of 33.1%. Time-resolved fluorescence and the distinct solvation effects of A-Cdots conclude that the blue-PL and y-PL are from the radiative recombination of emissive sites of amide and carboxylic groups. For the solvent-dependent optical properties and the amplification effect of dual-color PL, the A-Cdots exhibit good potential in the very sensitive detection of trace impurities in alkane solution, such as ethanol in c-hexane with content as low as 0.033% (v/v). With A-Cdots as phosphors, white-light-emitting diodes (WLEDs) are successfully constructed with luminous efficiency of 52.72 lm W−1. This work provides a new thinking for the design of multicolor luminous Cdots materials and their potential applications.  相似文献   

11.
比率型荧光传感器由于具有抗干扰能力强和灵敏度高等优点,在食品安全、金属离子检测、环境污染分析等许多领域显示出巨大的应用潜力。而碳点作为一种新型荧光材料,不仅具有优良的荧光性能,而且毒性低、易于表面功能化,非常适合构建比率型荧光传感器。本文就近年来比率型碳点荧光传感器在检测领域的研究进展进行综述,重点阐述了碳点的荧光检测机理,并根据碳点使用情况的不同,对不同类型的比率型碳点荧光传感器进行了分类总结。最后提出了该领域亟待解决的困难和问题,并对其在分析物检测方面的发展方向进行了展望。  相似文献   

12.
Zero‐dimensional fluorescent carbon dots (CDs) that are used as a cell‐imaging reagent are prepared by using a simple and effective route employing lithium‐intercalated graphite from lithium‐ion batteries as a carbon source. Under ultrasonic exfoliation, the interlayer space increases, while the layer distortion and remaining lithium of the lithium‐intercalated graphite are utilized to disrupt the graphitic structure and produce the CD suspension. Subsequently, after concentration and purification, the obtained colloidal CD suspension has a fluorescent yield of up to 1.2% and is therefore comparable to the CDs prepared in previous reports. These CD products are water‐soluble, nanosized (approximately 3.5 nm), and biocompatible and can easily enter into HeLa cells to act as a cell‐imaging reagent without any further functionalization. In addition, these CDs do not impose toxicity against HeLa cells and have high photostability with low photobleaching and demonstrate potential applications for bio‐labeling as well as solution state optoelectronics.  相似文献   

13.
Carbon dots (CDs) are emerging photoluminescent materials with excellent optical properties. However, the lack of active sites in primitive CDs has limited their development applications. Herein, functionalized carbon dots (Z-CDs) are successfully prepared by surface modification of CDs with mono (6-amino-6-deoxy) cyclodextrin (β-CD). The introduction of β-CD increases the spatial potential resistance between CDs, which effectively reduces the self-quenching effect. Moreover, the conjugated domains of Z-CDs are expanded, which improves the optical properties with a quantum yield of 48.74%. Z-CDs are able to be used in the sequential detection of morin and Al3+, and the fluorescence mechanisms are confirmed to be internal filtration effect and fluorescence resonance energy transfer, respectively. The limits of detection are 0.817 and 0.231 × 10−6 m . This study not only provides an idea to solve the problem of self-quenching of CDs but also enriches the detection means of flavonoids and ions, which is expected to be applied to biosensing and environmental monitoring.  相似文献   

14.
Carbon dots (CDs) are a new class of materials which have been extensively studied due to their unique optical properties, low toxicity, and abundance of raw materials to synthesize them. In this minireview, it is highlighted that the stability of the optical properties of CDs is an important aspect that has received very little attention. While CDs are usually considered to be photostable, several recent reports show they are prone to photobleaching. Studies of blinking, photobleaching, and photoswitching of CDs are reviewed here. It is noted that there is a lack of systematic studies about the photostability of CDs, and efforts are needed to further study this aspect. Furthermore, it is observed that the stability of CDs is somewhat related to their photoluminescence quantum yield, excitation dependence of PL emission, precursor, and synthesis method used to produce CDs.  相似文献   

15.
Carbon quantum dots and their incorporation in various polymer matrices are reviewed. In general, the importance of such polymer nanocomposites in biomedical applications is highlighted. In particular, the physical and antimicrobial properties of carbon quantum dots and their ability to produce reactive oxygen species under certain conditions using the principle of photodynamic therapy are explored. The characterization, preparation, mechanism of action, and use of carbon quantum dots are discussed. The known combinations of polymers and carbon quantum dots and their use in various industries are also described.  相似文献   

16.
向日葵作为我国主要的油料作物之一,其秸秆是天然的纤维素材料,具有绿色无毒,成本低廉的优势,是制备生物质碳量子点的理想材料之一。近年来,由于含铜农药和化学肥料的不规范使用,大量含铜污染物被排放导致农田土壤和水环境中的铜含量远高于环境背景值。因此,迫切需要开发出一种选择性好、灵敏性强且对环境友好的Cu2+检测方法。碳量子点(CDs)是一种粒径小于10 nm的准球形荧光碳纳米材料,因其表面含有丰富的极性官能团,具有良好的水溶性而被广泛研究。与传统的半导体量子点(CdSe, CdTe)相比,CDs具有合成原料广泛、生物相容性好等优点。主要应用于生物成像、光催化、光电转化以及传感检测等领域。然而目前用于碳化合成CDs的前驱体大多为昂贵的化学品,且合成过程复杂污染环境,限制了CDs的大规模生产与应用。开发出一种生态友好,简单、廉价的CDs合成方法是很有意义的。本研究以废弃的向日葵秸秆为碳源,采用简便的水热法合成生物质碳量子点(S-CDs)作为荧光探针,用于检测识别Cu2+。通过对S-CDs的一系列光学性质分析与表征,鉴定出其表面官能团主要包括O—H, N...  相似文献   

17.

For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.

  相似文献   

18.
Using coal pitch as the carbon source to synthesize carbon dots (CDs), one of the most promising photoluminescence (PL) materials, can play an important role in the global demand for carbon neutralization. However, the reported CDs derived from coal pitch are mainly limited blue emission. Here, a new route to synthesize yellow-emissive CDs from coal pitch is developed by extracting the lightweight aromatic compounds from coal pitch and solvothermally treating the extracts in dichloromethane in the presence of a small amount of nitric acid and sulfuric acid. Notably, the obtained CDs exhibit excitation independent yellow emission, large Stokes shift and good photostability. The application of the CDs for luminescent solar concentrators (LSCs) is evaluated. It is found that the CDs can be well dispersed in polymethyl methacrylate (PMMA) matrix and fabricated transparent LSCs. The synthesized LSC (4 × 4 × 0.2 cm3) with the optimal CDs concentration exhibits an optical conversion efficiency (ηopt) of 3.31% and power conversion efficiency (ηPCE) of 1.95% under simulated sun light illumination (100 mW cm−2). This research offers a new strategy to synthesize new kind of CDs with desired performance by exploiting the native chemistries of coal pitch.  相似文献   

19.
以柠檬酸和尿素为碳源和氮源,采用固态法一步合成出量子产率高达23%的荧光碳点。表征结果表明,所合成的荧光碳点为平均粒径为3~4 nm的球形,表面富含羟基、羧基和胺基等基团。此外,碳点的XRD谱图显示出无定型碳的特征峰。以所制备的碳点为荧光探针,基于碳点和阿霉素之间的共振能量转移而猝灭碳点的荧光,建立了阿霉素定量分析新方法。实验中考察了溶液的pH值和孵化时间的影响。在最佳实验条件下,阿霉素浓度在0.67~16.67 μg·mL-1范围之间与碳点的荧光猝灭值ΔF呈良好的线性关系(R2=0.995),检出限为0.22 μg·mL-1,回收率为83.0%~89.2%,相对标准偏差小于2.5%(n=5)。尿样中常见物质对测定干扰较小,显示出所建立的方法具有较好的选择性。  相似文献   

20.
彭勇  邢明铭  罗昔贤  王立强 《物理学报》2012,61(13):137201-137201
有机染料和量子点等荧光标记材料存在发射光谱宽、 光热稳定性差和细胞毒性等缺陷, 限制了其在生物学研究中的应用. 镧系掺杂上转换发光材料不存在"自发荧光"和"光漂白"现象, 灵敏度高, 长期稳定性好, 利于活体检测. 论文首次采用热解法, 以油酸和十八烯为表面活性剂和溶剂, 制备了KY3F10: Yb, RE(RE=Er, Ho, Tm) 纳米晶. 研究了油酸含量对产物形貌和粒径尺寸的影响, 当油酸与十八烯的比例为3:1时, 为制备类球形单分散纳米晶体的最佳工艺条件, 在980 nm半导体激光器激发下, 样品KY3F10: Yb, RE(RE=Er, Ho, Tm) 分别发射出较强的黄绿、 绿色和蓝色光, 这些结果显示KY3F10: Yb, RE(RE=Er, Ho, Tm) 纳米粒子作为生物探针在多重荧光标记方面具有优异的特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号