首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymerization of fullerene (C60) with methyl methacrylate (MMA) was carried out using triphenylbismuthonium ylide (abbreviated as Ylide) as a novel initiator in dioxan at 60°C for 4 h in a dilatometer under a nitrogen atmosphere. The reaction follows ideal kinetics: Rp∝ [Ylide]0.5[C60]?1.0[MMA]1.0. The rate of polymerization increases with an increase in concentration of initiator and MMA. However, it decreases with increasing concentration of fullerene due to the radical scavenging effect of fullerene. The overall activation energy of copolymerization was estimated to be 57 KJ mol?1. The fullerene-MMA copolymers (C60-MMA) were characterized by FTIR, UV–Vis, NMR and GPC analyses.  相似文献   

2.
Modeling of the addition of various radicals to C60 fullerene is currently an active research area. However, the radicals considered are not able to adequately model polymeric radicals. In this work, we have performed a theoretical study of the possible reactions of C60 fullerene with 1‐n‐phenylpropyl radicals, which are used to model polystyrene radicals. Several possible ways of subsequent addition of up to four 1‐phenylpropyl radicals to C60 have been analyzed, the structures of the intermediates have been defined and thermal properties, such as the activation enthalpies of the corresponding reactions, have been calculated using density functional theory with the approximation of PBE/3z. It is shown that the topology of the spin density distribution on the fullerenyl radical causes regioselectivity for further radical addition. According to the energetic characteristics of the reactions, we assume the possibility of formation of products of one‐, two‐, three‐, and four‐ addition of the growth radical to the fullerene core in radical polymerization of styrene in the presence of C60 fullerene. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

4.
The quantum-chemical simulation of possible reactions occurring at the initial stage of the free-radical polymerizations of styrene and methyl methacrylate in the presence of fullerene C60 is performed. The reactions of interaction between initiating and model short-chain growing radicals containing from one to three monomer units with fullerene are considered. It is shown that, at the initial stage of styrene polymerization, the addition of short-chain growing radicals to fullerene predominates (with respect to the reaction of chain propagation). In the case of methyl methacrylate polymerization in the presence of fullerene C60, the induction period is absent because of a higher probability of the initiation and chain propagation reactions (compared with the chain-termination reaction of short growing poly(methyl methacrylate) chains on fullerene C60). The formation of bis- and trisadducts of fullerene C60 with short-chain styrene and methyl methacrylate growing radicals is analyzed. The quantum-chemical simulation results are confirmed by electron spectroscopy and ESR studies.  相似文献   

5.
Br‐terminated polystyrenes of controlled molar masses and low polydispersities prepared by atom transfer radical polymerization (ATRP) can be converted to macroradicals using an appropriate catalytic complex (CuBr/bipyridine/100 °C). The addition of this macroradicals PS° to 6–6 bonds of C60 follows a specific atom transfer radical addition mechanism that favors the grafting of even number of chains onto the fullerene core. This peculiar mechanism, resulting from the properties of C60, offers an easy synthetic route toward well‐defined di‐ and tetra‐adducts. In these adducts the disturbance of the electronic structure of the fullerene is kept at its minimum, as only one double bond needs to be opened on the C60 to add two PS chains and only two double bonds are converted to single bonds in the tetra‐adduct. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3456–3463, 2004  相似文献   

6.
The reaction between allyl compounds and fullerene C60 has been investigated via dilatometry under the conditions of free-radical polymerization. It has been shown that the rate of a variation in the volume of the reaction mixture plotted versus the concentration of fullerene C60 is described by a curve with a minimum. It has been established that, in the presence of fullerene and the allyl monomer, the polymerization of methyl methacrylate proceeds without any induction period. It has been concluded that allyl radicals interact with fullerene C60.  相似文献   

7.
The poly(methyl methacrylates) of branched structure with a covalently bonded fullerene were synthesized by three-dimensional radical polymerization of methyl methacrylate with triethylene glycol dimethacrylate or allyl methacrylate in toluene containing C60. The kinetics of copolymerization of methyl methacrylate with multifunctional co-monomers in the absence of fullerene is compared with that in its presence. The physicochemical characteristics and thermal stability of the obtained copolymers are also compared. The electron spin resonance (ESR) method was applied to study the kinetics of accumulation of the fullerene radicals in the course of the (co)polymerization of methyl methacrylate.  相似文献   

8.
It was determined by ESR spectroscopy that the UV irradiation of toluene solutions containing Hg[P(O)(OPri)2 and the complex (2-C60)Os(CO)(PPh3)2(CNBut) produces six stable regioisomeric adducts of phosphoryl radicals with complexes, which are not demetallated under UV irradiation and do not dimerize in the absence of UV irradiation. This is caused by the addition of the phosphoryl radicals to the carbon atoms of fullerene localized near the metal-containing moiety. The addition of the phosphoryl radicals to (2-C70)Os(CO)(PPh3)2(CNBut) gives rise to the formation of nine stable regioisomeric radical adducts. A comparison of the composition of regioisomers of the radical adducts of C70 with the phosphoryl radicals, which were formed directly from C70 and from the radical adducts of 2-C70)Os(CO)(PPh3)2(CNBut) by the demetallation of the latter, revealed an orienting effect of the osmium-containing moiety on the addition of the phosphoryl radicals to the fullerene complex.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1968–1972, September, 2004.  相似文献   

9.
An efficient and benign method for the preparation of aminomethyl-substituted fullerenes has been developed. The process, involving catalyst free, visible-light irradiation of 10% EtOH-toluene solutions containing fullerene C60 and N-trimethylsilylmethyl-substituted amines by using a 20 W compact fluorescent lamp, leads to formation of aminomethyl-substituted fullerene adducts in a highly efficient manner. The photoaddition reaction takes place via a pathway initiated by visible light absorption by C60, followed by SET from the amine to the triplet excited state of C60. Ethanol-promoted desilylation of the resulting a minimum radical then generates the corresponding α-amino radical which couples with the C60 radical anion to form the anion precursor of the fullerene adducts. The new approach using visible-light takes place under mild conditions and it does not require the use of photocatalysts. Thus, the method developed in this effort could broadens the range of functionalized fullerene derivatives that can be readily prepared.  相似文献   

10.
It has been demonstrated experimentally and theoretically that the essentially different inhibiting effects of fullerene C60 on the initial stage of the polymerizations of styrene and methyl methacrylate (including complete hampering of styrene polymerization throughout a long induction period) are of common kinetic nature. The difference arises from the competition between C60 and the monomer not for initiating radicals but for radicals originating from the monomer; that is, the difference stems from the competition between the chain propagation reactions and the termination reactions on fullerene molecules. As a consequence, the further development of the process is determined by the relative reactivities of the radicals toward C60 and towards their parent monomers.  相似文献   

11.
Dispersion of fullerene, C60, by addition of polymethacrylate dispersant in methyl methacrylate (MMA) and incorporation of C60 into poly(methyl methacrylate) (PMMA) were investigated. Copolymers synthesized by radical copolymerization of MMA and 2-naphthyl methacrylate (NMA), poly(MMA-co-NMA), effectively dispersed C60 in MMA to form clusters of 20?nm. In these cases, addition of minimal 110 naphthyl groups per unit C60 molecule afforded to give clusters with minimum of 20?nm sizes. Furthermore, block copolymers, poly(MMA-b-NMA) with MMA/NMA mole ratio from 12:1 to 20:1, also efficiently dispersed C60 to give formation of clusters of 20?nm size by addition of minimal 40 naphthyl groups per unit C60 molecule, which was corresponding to approximate nine layers of naphthyl group in block copolymer adsorbed on the surface of the cluster. Hybrid films of C60/PMMA, prepared by casting of C60-dispersed solution containing PMMA, exhibited absorbance at 400?nm linearly increased with C60 content.  相似文献   

12.
It was found that the 2-(p-fluorophenyl)hexafluoroisopropyl radical produced by thermal dissociation of the Polishchuk dimer [C(CF3)2C6H4F]2 can withdraw, under mild conditions, the H atom from the methyl group of toluene and mesitylene to form the corresponding radicals, whose addition to [60]fullerene occurs more selectively than in the case of photochemical production of these radicals. Dynamics of the step-by-step multiaddition of the radicals to C60 was studied by ESR. It was found that the addition of benzyl radicals affords adducts containing from 3 to 5 benzyl groups, whereas no spin-adducts with five addends were observed for more bulky 3,5-dimethylphenylmethyl radicals. The interaction of 3,5-dimethylphenylmethyl radicals with the metal complexes (η2-C60[IrH(CO)(PPh3)2] and (η2-C60[Pd(PPh3)2] was studied for the first time. It was shown that the palladium derivative undergoes only demetallation. In the case of the Ir complex, up to 3 radicals add to the fullerene ligand in the same hemisphere where the transition metal is coordinated. The reaction rates are ∼5 times lower than those for C60. The ability of 2-(p-fluorophenyl)hexafluoroisopropyl radicals to dehydrogenate C60H36 was found. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1119–1123, June, 1999.  相似文献   

13.
The radical polymerization of methyl methacrylate (MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system. Compared with the polymerization produced in the presence of single Lewis acids, AlCl3 or FeCl2, the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity (mm = 50%). The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids, although Lewis acids decelerate the polymerization of MMA. The effects of the Lewis acids were greater in a solvent with a lower polarity. A possible stereocontrol mechanism of the polymerization was proposed. The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species. These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.  相似文献   

14.
Radical polymerizations of styrene in the presence of C60 have been conducted at 90°C in benzene using benzoyl peroxide (BPO) as initiator. The behaviors of C60 are investigated by monitoring BPO concentration, C60 content, and polymerization time. It is found that C60 acts like a radical absorber which multiply absorbs primary radicals from BPO and propagating radicals. Therefore, in the presence of C the yield and molecular weight decrease significantly. However, the molecular weight distribution is narrowed down by its coupling characteristics. At the beginning of the reaction, owing to the radical-absorbing effect of C60, it makes the chain-propagation restricted. However, the number of polystyrene chains added to C60 increases with polymerization time. Direct dilatometric experiment proves that C60 is mainly as inhibitor for radical polymerization of styrene by benzoyl peroxide. Besides, the glass transition temperature (Tg) of the copolymers increases with increasing content of C60. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2969–2975, 1999  相似文献   

15.
A new chain transfer agent, ethyl 2-[1-(1-n-butoxyethylperoxy) ethyl] propenoate (EBEPEP) was used in the free radical polymerization of methyl methacrylate (MMA), styrene (St), and butyl acrylate (BA) to produce end-functional polymers by a radical addition–substitution–fragmentation mechanism. The chain transfer constants (Ctr) for EBEPEP in the three monomers polymerization at 60°C were determined from measurements of the degrees of polymerization. The Ctr were determined to be 0.086, 0.91, and 0.63 in MMA, St, and BA, respectively. EBEPEP behaves nearly as an “azeotropic” transfer agent for styrene at 60°C. The activation energy, Eatr, for the chain transfer reaction of EBEPEP with PMMA radicals was determined to be 29.5 kJ/mol. Thermal stability of peroxyketal EBEPEP in the polymerization medium was estimated from the DSC measurements of the activation energy, Eath = 133.5 kJ/mol, and the rate constants, kth, of the thermolysis to various temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
C60 fullerene was radiolyzed in toluene solution both in presence of air and in vacuum at four different radiation doses 12, 24, 36, 48 and 96 kGy. Clear evidences of the addition of benzyl radicals to the fullerene cage derive from FT-IR and C13-NMR spectra of the reaction product. In presence of air the interference of oxygen is evident in the FT-IR spectra and from the elemental analysis. A detailed analysis of the kinetics of the multiple addition of benzyl radicals to the fullerene cage was made spectrophotometrically with the determination of the addition rate constants at the each addition step and the average number of benzyl groups added to the fullerene cage as function of the radiation dose.  相似文献   

17.
Kinetics was studied of bulk polymerization of methyl methacrylate initiated by dicyclohexyl peroxydicarbonate in the presence of tri-n-butylborane and fullerene C60 (or C70) at variable ratio initiator: fullerene. The deceleration of the polymerization in the first stage of the reaction (below 10% conversion) was established by dilatometric method that depended on the fullerene concentration and the mode of its addition to the monomer. It was shown that at similar ratios initiator: fullerene the C60 inhibited the polymerization process considerably stronger than C70. The gel-permeation chromatography revealed the widening of the molecular weight distribution of the poly(methyl methacrylates) containing C60 or C70 compared to its analog synthesized under the same conditions without fullerene. It was established that in the fullerene-containing poly(methyl methacrylates) all the framework nanospecies are linked by covalent bonds and are mostly accumulated in the low-molecular fractions. The effect of the covalently bound fullerene on the molecular characteristics of polymers were investigated by translational isothermal diffusion, high-speed sedimentation, and viscometry  相似文献   

18.
Leading position among numerous methods for synthesis of star polymers is occupied, as regards their potential and diversity, by techniques based on the anionic polymerization. The review considers five basic approaches to application of the anionic polymerization mechanisms in relation to an agent used or procedure employed (methods with polyfunctional coupling agents, multifunctional initiators, polymerizing and nonpolymerizing divinyl agents; multistage methods, methods using C60 fullerene). All groups of syntheses are illustrated by examples, and advantages of methods for synthesis of various homo- and heteroarm star structures are demonstrated. Particular attention is given to syntheses with C60 fullerene. The potential of C60 fullerene as a coupling agent for “living” polymer chains and methods for conversion of polymeric derivatives of C60 (hexaadducts) to polyfunctional macroinitiators of anionic polymerization are described and techniques for functionalization of polymeric fullerene derivatives and their coupling into structures with a complex controllable architecture are presented.  相似文献   

19.
Chemiluminescence (CL), HLPC, and volumetry were used to demonstrate that fullerene N60 exerts no inhibiting effect on the liquid-phase chain oxidation of hydrocarbons. Peroxide radicals RO2 · do not add to N60 in hydrocarbons with active C—H bond, because the reaction is suppressed by the competing addition of RO2 · to the hydrocarbon. The addition of RO2 · radicals to N60 does occur in benzene (a solvent with strong C—H bonds) in the presence of low concentrations of the hydrocarbon oxidized. Fullerene N60 is found to exhibit a new type of liquid_phase CL, which is presumably generated upon thermal decomposition of fullerene peroxides formed by adding peroxy radicals to fullerene in the C60—AIBN—O2—C2H5Ph—PhH system. The CL spectrum exhibits long-wavelength maxima at 645 and 685 nm. The supposed CL emitters are keto derivatives of fullerene N60.  相似文献   

20.
By means of UV-visible spectrophotometry, ESR spectroscopy, and calorimetry, it was shown that the low-temperature postradiation polymerization of vinyl monomers in the presence of C60 fullerene (the yield of fullerene linking was above 90%) occurred via the radical mechanism in the living mode over the temperature range of 120–140 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号