首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The permeation properties of H2, N2, and CO2 were determined at 35 °C and pressures up to 15 atm in phase‐separated polyether‐b‐polyamide segmented block copolymers. These polymers contain poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon‐6 [PA6] or nylon‐12 [PA12] as the hard polyamide phase. Extremely high values of polar (or quadrupolar)/nonpolar gas selectivities, coupled with high CO2 permeability coefficients, were observed. CO2/H2 selectivities as high as 9.8 and CO2/N2 selectivities as high as 56 were obtained in polymers with CO2 permeability coefficients of approximately 220 × 10−10 cm3(STP) cm/(cm2 s cmHg). As the amount of polyether increases, permeability increases. Gas permeability is higher in polymers with less polar constituents, PTMEO and PA12, than in those containing the more polar PEO and PA6 units. CO2/N2 and CO2/H2 selectivities are higher in polymers with higher concentrations of polar groups. These high selectivity values derive from large solubility selectivities in favor of CO2. Because CO2 is larger than H2 and has, therefore, a lower diffusion coefficient than H2, the weak size‐sieving ability of the rubbery polyether phase, which is the locus of most of the gas permeation, also contributes to high CO2/H2 selectivity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2051–2062, 2000  相似文献   

2.
The solubilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n‐C4H10 were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether–polyamide segmented block copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as the hard polyamide phase. Sorption isotherms are linear for the least soluble gases (He, H2, N2, O2, and CH4), convex to the pressure axis for more soluble penetrants (CO2, C3H8, and n‐C4H10) and slightly concave to the pressure axis for ethane. These polymers exhibit high CO2/N2 and CO2/H2 solubility selectivity. This property appears to derive mainly from high carbon dioxide solubility, which is ascribed to the strong affinity of the polar ether linkages for CO2. As the amount of the polyether phase in the copolymers increases, gas solubility increases. The solubility of all gases is higher in polymers with less polar constituents, PTMEO and PA12, than in polymers with more polar PEO and PA6 units. CO2/N2 and CO2/H2 solubility selectivity, however, are higher in polymers with higher concentrations of polar repeat units. The sorption data are complemented with physical characterization (differential scanning calorimetry, elemental analysis, and wide angle X‐ray diffraction) of the various block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2463–2475, 1999  相似文献   

3.
The goal of this work is to explore new polyimide materials that exhibit both high permeability and high selectivity for specific gases. Copolyimides offer the possibility of preparing membranes with gas permeabilities and selectivities not obtainable with homopolyimides. A series of novel fluorinated copolyimides were synthesized with various diamine compositions by chemical imidization in a two-pot procedure. Polyamic acids were prepared by stoichiometric addition of solid dianhydride in portions to the diamine(s). The gas permeation behavior of 2,2′-bis(3,4′-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)-2,6-diamine toluene (2,6-DAT)/1,3-phenylenediamine (mPDA) polyimides was investigated. The physical properties of the copolyimides were characterized by IR, DSC and TGA. The glass transition temperature increased with increase in 2,6-DAT content. All the copolyimides were soluble in most of the common solvents. The gas permeability coefficients decreased with increasing mPDA content. However, the permselectivity of gas pairs such as H2/N2, O2/N2, and CO2/CH4 was enhanced with the incorporation of mPDA moiety. The permeability coefficients of H2, O2, N2, CO2 and CH4 were found to decrease with the increasing order of kinetic diameters of the penetrant gases. 6FDA-2,6-DAT/mPDA (3:1) copolyimide and 6FDA-2,6-DAT polyimide had high separation properties for H2/N2, O2/N2, CO2/CH4. Their H2, O2 and CO2 permeability coefficients were 64.99 Barrer, 5.22 Barrer, 23.87 Barrer and 81.96 Barrer, 8.83 Barrer, 39.59 Barrer, respectively, at 35°C and 0.2 MPa (1 Barrer = 10−10 cm3 (STP)·cm·cm−2·s−1·cmHg−1) and their ideal permselectivities of H2/N2, O2/N2 and CO2/CH4 were 69.61, 6.09, 63.92 and 53.45, 5.76, 57.41, respectively. Moreover, all of the copolyimides studied in this work exhibited similar performance, lying on or above the existing upper bound trade-off lines between permselectivity and permeability. They may be utilized for commercial gas separation membrane materials. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

4.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

5.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi-M′MOF , pyz=pyrazine), with multiple functional sites and compact one-dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm−3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2-capture amount of 4.54 mol L−1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi-M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi-M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

6.
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2/N2 and CO2/N2. The membrane with Br? as a counter ion in the framework exhibited a H2/N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4?, the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2/N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.  相似文献   

7.
Designing porous materials for C2H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2H2 sorption and C2H2/CO2 separation in two isostructural NbO metal–organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA . The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2H2, leading to irreversible structural collapse and loss of C2H2/CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2H2 to form specific π-complexation, contributing to high C2H2 capture (28.7 cm3 g−1 at 0.01 bar and 153 cm3 g−1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2H2 from C2H2/CO2 mixtures with satisfying selectivity and C2H2 capacity (37 min g−1). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.  相似文献   

8.
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2/N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel‐fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2/N2 selectivity are designed by incorporating CO2‐philic groups in polymers such as poly(ethylene oxide)‐containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2/N2 separation properties for CO2 capture from flue gas are highlighted.  相似文献   

9.
A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 16–24  相似文献   

10.
Polyimide membranes derived from 6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been used to separate 50/50 CO2/CH4 mixtures and multicomponent synthetic natural gas mixtures at 35 °C and feed pressures up to 55 atm. For 6FDA-DAM:DABA 2:1 membranes the effects of thermal annealing and covalent crosslinking are decoupled with respect to effects on permeabilities and selectivity. Crosslinking at 295 °C with 1,4-butylene glycol and 1,4-cyclohexanedimethanol increases CO2 permeabilities by factors of 4.1 and 2.4, respectively, at 20 atm feed pressure, without a loss in selectivity, relative to crosslinking at 220 °C. Thermal annealing and crosslinking also reduce CO2 plasticization effects. Crosslinking of DABA-containing copolymers, therefore, can produce membranes with tunable transport properties that offer significantly higher performance with better plasticization-resistance than that reported in the literature for the commercial polymers Matrimid® and cellulose acetate for CO2 removal from natural gas mixtures. Separation of complex mixtures containing CO2, CH4, C2H6, C3H8, and C4H10 or toluene results in a significant decrease of the CO2 permeability, but only a moderate decrease in the CO2/CH4 selectivity.  相似文献   

11.
A strategy called ultramicroporous building unit (UBU) is introduced. It allows the creation of hierarchical bi‐porous features that work in tandem to enhance gas uptake capacity and separation. Smaller pores from UBUs promote selectivity, while larger inter‐UBU packing pores increase uptake capacity. The effectiveness of this UBU strategy is shown with a cobalt MOF (denoted SNNU‐45) in which octahedral cages with 4.5 Å pore size serve as UBUs. The C2H2 uptake capacity at 1 atm reaches 193.0 cm3 g?1 (8.6 mmol g?1) at 273 K and 134.0 cm3 g?1 (6.0 mmol g?1) at 298 K. Such high uptake capacity is accompanied by a high C2H2/CO2 selectivity of up to 8.5 at 298 K. Dynamic breakthrough studies at room temperature and 1 atm show a C2H2/CO2 breakthrough time up to 79 min g?1, among top‐performing MOFs. Grand canonical Monte Carlo simulations agree that ultrahigh C2H2/CO2 selectivity is mainly from UBU ultramicropores, while packing pores promote C2H2 uptake capacity.  相似文献   

12.
The effect of polyethyleneglycol (PEG) on gas permeabilities and selectivities was investigated in a series of miscible cellulose acetate (CA) blend membranes. The permeabilities of CO2, H2, O2, CH4, N2 were measured at temperatures from 30 to 80°C and pressures from 20 to 76 cmHg using a manometric permeation apparatus. It was determined that the blend membrane having 10 wt% PEG20000 exhibited higher permeability for CO2 and higher permselectivity for CO2 over N2 and CH4 than those of the membranes which contained 10% PEG of the molecular weight in the range 200–6000. The CA blend containing 60 wt% PEG20000 showed that its permeability coefficients of CO2 and ideal separation factors for CO2 over N2 reached above 2 × 10−8 [cm3 (STP) cm/cm2 s cmHg] and 22, respectively, at 70°C and 20 cmHg. Based on the data of gas permeability coefficients, time lags and characterization of the membranes, it is proposed that the apparent solubility coefficients of all CA and PEG blend membranes for CO2 were lower than those of the CA membrane. However, almost all the blend membranes containing PEG20000 showed higher apparent diffusivity coefficients for CO2, resulting in higher permeability coefficients of CO2 with relation to those of the CA membrane. It is attributed to the high diffusivity selectivities of CA and PEG20000 blend membranes that their ideal separation factors for CO2 over N2 were higher than those of the CA membrane in the range 50–80°C, even though the ideal separation factors of almost all PEG blend membranes for CO2 over CH4 became lower than those of the CA membrane over nearly the full range from 30° to 80°C.  相似文献   

13.
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal–organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2H2 uptake capacity under low and ambient pressures (175.3 cm3 cm−3 @ 0.1 bar, 222.9 cm3 cm−3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2H2/C2H4, 22.7 for C2H2/CO2). Remarkably, SNNU-98-Mn can efficiently separate C2H2 from C2H2/CO2 and C2H2/C2H4 mixtures with a benchmark C2H2/C2H4 (1/99) breakthrough time of 2325 min g−1, and produce 99.9999 % C2H4 with a productivity up to 64.6 mmol g−1, surpassing values of reported MOF adsorbents.  相似文献   

14.
Polymers containing CO2‐philic groups are of great interest for CO2/light gas separation membranes because the affinity toward CO2 can effectively increase CO2 solubility and thus permeability. In this study, polysulfones (PSUs) modified with different degrees of benzyldimethylamine (DMA), benzyltrimethylammonium fluoride (TMAF), and benzyltrimethylammonium iodide (TMAI) were synthesized using sequential post‐functionalization reactions and investigated for CO2/N2 and CO2/CH4 separation. The physical properties of these polymers were studied, including density, fractional free volume, and glass transition temperature. In contrast to the conventional wisdom that tertiary amines exhibit an affinity toward CO2, this study convincingly shows that the DMA substituent has a minimal impact on CO2 solubility and CO2/light gas solubility selectivity in PSUs under dry condition. On the other hand, incorporating TMAF and TMAI in PSU significantly increases CO2 solubility. Particularly, introducing TMAI with a molar ratio of 1.07 relative to PSU repeating units increases CO2/CH4 solubility from 4.4 to 5.2, CO2/CH4 permeability selectivity from 21 to 45, and CO2/N2 permeability selectivity from 24 to 33 at 35 °C, while the CO2 permeability decreases from 5.6 to 1.7 Barrers. The effect of these functional groups in PSUs on gas diffusivity and diffusivity selectivity can be satisfactorily described by the free volume model. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1239–1250  相似文献   

15.
The separation of acetylene (C2H2) from carbon dioxide (CO2) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2-selective porous materials are superior to the C2H2-selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2-selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g−1) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2/C2H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.  相似文献   

16.
Organic-inorganic hybrid materials were prepared by reacting 3-isocyanatopropyltriethoxysilane (IPTS) with hydroxyl terminated poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PEPG), followed by hydrolysis and condensation with acid catalysis. Composite membranes have been obtained by casting hybrid sol on the microporous polysulfone substrate. The membranes were characterized by Fourier transform infrared (FT-IR), 13C NMR and 29Si NMR. The permeability coefficients of N2, O2, CH4 and CO2 were measured by variable volume method. The gas permeability coefficients increase with increasing molecular weight of the polyethers. For the membranes containing PEG and PEPG, the higher values of CO2 permeability coefficients and CO2/N2 separation factors are due to the presence of ethylene oxide segments. In case of PEPG membranes, molecular weight has more influence on CO2 permeability than the effect of facilitation by ethylene oxide. The addition of TEOS into hybrid sol results in the decrease of all the gas permeability and does not affect the gas selectivity. PEG2000 membrane display the most performance among the hybrid membranes investigated here. The best values observed are CO2 permeability of 94.2 Barrer with selectivity of 38.3 for CO2/N2 and 15.6 for CO2/CH4.  相似文献   

17.
Polydimethylsiloxane (PDMS) is the most commonly used membrane material for the separation of condensable vapors from lighter gases. In this study, a composite PDMS membrane was prepared and its gas permeation properties were investigated at various upstream pressures. A microporous cellulose acetate (CA) support was initially prepared and characterized. Then, PDMS solution, containing crosslinker and catalyst, was cast over the support. Sorption and permeation of C3H8, CO2, CH4, and H2 in the prepared composite membrane were measured. Using sorption and permeation data of gases, diffusion coefficients were calculated based on solution‐diffusion mechanism. Similar to other rubbery membranes, the prepared PDMS membrane advantageously exhibited less resistance to permeation of heavier gases, such as C3H8, compared to the lighter ones, such as CO2, CH4, and H2. This result was attributed to the very high solubility of larger gas molecules in the hydrocarbon‐based PDMS membrane in spite of their lower diffusion coefficients relative to smaller molecules. Increasing feed pressure increased permeability, solubility, and diffusion coefficients of the heavier gases while decreased those of the lighter ones. At constant temperature (25°C), empirical linear relations were proposed for permeability, solubility, and diffusion coefficients as a function of transmembrane pressure. C3H8/gas solubility, diffusivity, and overall selectivities were found to increase with increasing feed pressure. Ideal selectivity values of 9, 30, and 82 for C3H8 over CO2, CH4, and H2, respectively, at an upstream pressure of 8 atm, confirmed the outstanding separation performance of the prepared membrane. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Rigid molecular sieving materials are the ideal candidates for gas separation (e. g., C2H2/C2H4) due to their ultrahigh adsorption selectivity and the absence of gas co-adsorption. However, the absolute molecular sieving effect for C2H2/C2H4 separation has rarely been realized because of their similar physicochemical properties. Herein, we demonstrate the absolute molecular sieving of C2H2 from C2H4 by a rigid ultra-microporous metal-organic framework ( F−PYMO−Cu ) with 1D regular channels (pore size of ca. 3.4 Å). F−PYMO−Cu exhibited moderate acetylene uptake (35.5 cm3/cm3), but very low ethylene uptake (0.55 cm3/cm3) at 298 K and 1 bar, yielding the second highest C2H2/C2H4 uptake ratio of 63.6 up to now. One-step C2H4 production from a binary mixture of C2H2/C2H4 and a ternary mixture of C2H2/CO2/C2H4 at 298 K was achieved and verified by dynamic breakthrough experiments. Coupled with excellent thermal and water stability, F−PYMO−Cu could be a promising candidate for industrial C2 separation tasks.  相似文献   

19.
Permeability coefficients P for He, O2, N2, CO2 CH4, C2H4, C2H6, and C3H8 in 12 different silicone polymer membranes were determined at 35.0°C and pressures up to 9 atm. Values of P for CO2, CH4, and C3H8 were also determined at 10.0 and 55.0°C. In addition, mean diffusion coefficients D and solubility coefficients S were obtained for CO2, CH4, and C3H8 in 6 silicone polymers at 10.0, 35.0, and 55.0°C. Substitution of increasingly bulkier functional groups in the side and backbone chains of silicone polymers results in a significant decrease in P for a given penetrant gas. This is due mainly to a decrease in D , whereas S decreases to a much lesser extent. Backbone substitutions appear to have a somewhat lesser effect in depressing P than equivalent side-chain substitutions. The selectivity of a silicone membrane for a gas A relative to a gas B, i.e., the permeability ratio P (A)/P (B), may increase or decrease as a result of such substitutions, but only if the substituted groups are sufficiently bulky. The selectivity of the more highly permeable silicone membranes is controlled by the ratio S (A)/S (B), whereas the selectivity of the less permeable membranes depends on both the ratios D (A)/D (B) and S(A)/S(B). The permeability as well as the selectivity of one silicone membrane toward CO2 were significantly enhanced by the substitution of a fluorine-containing side group that increased the solubility of CO2 in that polymer.  相似文献   

20.
Copolyimide membranes with different poly(ethylene oxide) (PEO) content (from 28 to 68 wt percent, wt.%) have been thermally treated at different temperatures (from 200 to 300 °C) to evaluate the effect of the thermal protocol on the gas transport properties to O2, N2, CO2 and CH4. The permeability coefficients (P) for all gases increased after the thermal treatment of the membranes and were related to the PEO content, being this enhancement higher for membranes with lower PEO content. Thermal treatment at 300 °C of the membranes with 28 and 43 wt.% of PEO, yielded more productive materials for CO2/N2 separation since the permeability coefficients for CO2 (PCO2PCO2) increased 9.8 and 3.2 times, respectively, while the selectivity just suffered a small drop (less than 1.3 times in both cases). Overall, the membrane with 43 wt.% of PEO exhibited the best performance, with a PCO2PCO2 of 78 Barrer and a CO2/N2 selectivity of 52. For CO2/CH4 separation, an increase on selectivity of 1.8 times was obtained in the copolyimide with 43 wt.% of PEO, reaching the selectivity a value of 18. This enhancement of productivity has been associated to an improvement of phase segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号