首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了得到绿色单峰发光的聚合物材料, 我们设计并合成了9位取代的二烯丙基芴单体, 在NiCl2的催化下, 合成了可溶的聚芴衍生物, 聚(9,9-二烯丙基芴)(PAF). 较短的烯丙基链既可以增加聚芴的溶解度, 双键的存在又有利于聚芴发生分子间聚集而得到绿光发射的有机电致发光器件(OLED). PAF在溶液和薄膜状态下的荧光峰分别位于403和456 nm的蓝光区域, 而其器件ITO/PEDOT:PSS/PAF/LiF/Al(其中, ITO为氧化铟锡, PEDOT为聚(3,4-乙撑二氧噻吩), PSS为聚苯乙烯磺酸盐)的电致发光峰却红移至绿光区域(532 nm), 得到绿色单峰发光. 紫外吸收光谱、荧光发射光谱、红外光谱以及原子力显微镜(AFM)图像的结果证明, 造成PAF电致发绿光的机制为聚合物分子间聚集.  相似文献   

2.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

3.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

4.
Solid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin casting procedure. This study was carried out with a view of characterizing this popular and well known SC ISE using a series of complementary surface analysis techniques. This work revealed that PEDOT:PSS prevents the separation of an undesirable water layer at the buried interface of this SC ISE due to the high miscibility of water in the hydrophilic PEDOT:PSS layer. The lack of a clearly defined and molecularly sharp buried interface prohibits the formation of a distinct water layer presumably by eliminating sites that promote the accumulation of water. This outcome is important to the chemical sensor community since it provides further insights into the compatibility of sensor components in SC ISEs.  相似文献   

5.
In this study, polymeric nanocomposites of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) and functionalized multi-walled carbon nanotubes (MWCNTs) were spin coated on a pre-patterned ITO glass and used as a hole conducting layer in organic photovoltaic cells. The multi-layered ITO/MWCNT-PEDOT:PSS/CuPc/C60/Al devices were fabricated to investigate the current density-voltage characteristics and power conversion efficiency. The power conversion efficiency obtained from the device with a concentration of 1.0 wt% MWCNT in the PEDOT:PSS layer was increased twice as those adopted from device without MWCNT doping in the PEDOT:PSS layer and current density-voltage characteristics was also improved well with incorporation of MWCNTs.  相似文献   

6.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

7.
在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.  相似文献   

8.
The stability of a common interface used in organic photovoltaic cells, between the transparent electrode of Indium Tin Oxide (ITO) and a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is strongly influenced by the presence of humidity during processing, leading to significant migration of indium and tin species into the PEDOT:PSS layer. The interface was studied using neutral impact collision ion scattering spectroscopy (NICISS) and X-ray photoelectron spectroscopy (XPS), to determine migration of indium and tin into the polymer layer. It was found that the migration starts almost instantly after spin coating of the aqueous PEDOT:PSS solution and it reaches a saturation level within twenty four hours. The indium and tin were found always uniformly distributed over the sampling depth of almost one-third of the thickness of the PEDOT:PSS layer. Exposure to humidity following annealing resulted in the highest concentration (1.8 × 10(-3) mol cm(-3)) of indium or tin species, corresponding to about one indium or tin moiety per 4.7 monomer units in the PEDOT:PSS. The maximum bulk concentration of indium is about two orders of magnitude higher after exposure to humid conditions compared to vacuum dried conditions. XPS measurements confirm the presence of both indium and tin in the PEDOT:PSS and the formation of salts with the metal ions as cations.  相似文献   

9.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

10.
采用修饰多层LB膜的方法制备了导电聚合物聚-3,4-乙烯二氧噻吩/二十烷酸(PEDOT:AA)复合层状有序膜, 构筑了一种导电聚合物镶嵌的多层有序膜结构. 将这种导电聚合物有序薄膜沉积于ITO电极表面, 将其作为有机电致发光二极管(OLED)的空穴注入层, 并研究了ITO/(PEDOT:AA)/MEH-PPV/Al器件的性能. 研究结果表明, 与采用聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT:PSS)自组装膜和旋涂膜作为空穴注入层的ITO/(PEDOT:PSS)/MEH-PPV/Al器件相比, 器件的发光效率增加, 起亮电压降低. 我们认为这是由于PEDOT:AA薄膜提供了一种有序层状结构后, 减小了ITO与MEH-PPV间的接触势垒, 改善了空穴载流子注入效率. 进一步的研究表明, 由于PEDOT:AA多层膜间靠较弱的亲水、疏水作用结合, 这种导电多层有序膜的热稳定性与普通LB膜相似, 在较高温度下发生从层状有序态到无序态的变化, 这是导致OLED器件性能发生劣化的主要原因.  相似文献   

11.
Electrochemical copolymerization of 3-trimethoxysilanyl-propyl-N-aniline (TMSPA) with 2,5-dimethoxyaniline (DMA) was performed in 1 M HCl aqueous solution for different feed ratios of TMSPA using cyclic voltammetry. The deposition rate of TMSPA–DMA copolymer is higher than that of PTMSPA but lower than that of PDMA. (TMSPA-co-DMA) film was deposited using electrochemical polymerization as conducting film on indium tin oxide (ITO) electrode and used as an electrode in an electrochromic device. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was spin-coated on ITO as the other electrode. Carboxyl-terminated- butadiene-acrylonitrile (CTBN) blended with LiClO4 was used as solid polymer electrolyte. A total solid electrochromic device was assembled as follows: ITO|P(TMSPA-co-DMA)LiClO4-CTBNPEDOT:PSS|ITO. The columbic efficiency of the devices reached to 104% for P(TMSPA-co-DMA) film with TMSPA feed ratio of 0.25. The optical contrast (ΔT, %) of the single electrode and the device were determined by UV–vis spectroelectrochemical studies. The stability of ΔT was improved during color switching from +1.5 to −1.5 V (vs. PEDOT) for this device. The device was pale yellow at −1.5 V and blue at +1.5 V.  相似文献   

12.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

13.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

14.
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs.  相似文献   

15.
We demonstrated a simple patterning method for the deposition of polymer electrodes such as poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). We made use of the difference in wettability between hydrophobic surfaces and hydrophilic surfaces to make the patterns. However, the patterns made with our patterning method created undesirable ring‐like stains, which were caused by the outward flow of the solute within the PEDOT/PSS solution drop. To achieve homogenous device performance, we proposed a simple process for removing this ring‐like stain by making the surface tension gradient with dual solvent system in the PEDOT/PSS solution drop. Because this surface tension gradient causes the inward flow of the solute within the PEDOT/PSS solution drop, the ring‐like stain is removed. Finally, we confirmed the potential of our patterning method for polymer electrodes such as the PEDOT/PSS by fabricating pentacene thin‐film transistors (TFTs) and measuring the electrical properties of the pentacene TFTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1590–1596, 2011  相似文献   

16.
The primary goal with this work is to create electrically conductive cellulose fibres, this has been done to explore possible new applications for fibre based material. This research uses various methods to create polyelectrolyte multilayers (PEMs) on bleached softwood fibres and on SiO2 model surfaces, by sequentially treating these materials with poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) and poly(allyl amine) (PAH). Paper sheets were then produced from the PEM-modified pulp and evaluated in terms of tensile strength, adsorbed amount of polymer, and electrical conductivity. To evaluate the influence of fibre charge on the measured paper properties, pulps of two different initial fibre charge densities were prepared via carboxymethylation. Because of the bluish colour of PEDOT:PSS, the build-up of PEM could be easily followed, since the fibres grew increasingly darker blue throughout the modification sequence. The conductivity of the fibre network increased by 2−3 orders of magnitude when the pulp of a higher fibre charge density was used. This suggests that it is more important to create a fibrous network with a high fibre-fibre joint strength and a large total joined area in the sheet rather than to maximize the adsorbed amount of PEDOT:PSS. A difference in conductivity could also be noted depending on the polyelectrolyte adsorbed in the outer layer, PAH lowered the conductivity compared to PEDOT:PSS. Evaluating the mechanical properties revealed that the use of PEDOT:PSS reduces the tensile strength of the paper. When five double layers had been adsorbed onto the carboxymethylated sample in which PEDOT:PSS formed the outer layer, calculations indicated a 25% decrease in tensile strength compared to that of reference material without PEMs. ESEM studies indicate that PEM treatment produces a significantly changed and somewhat smoother fibre surface.  相似文献   

17.
Mg O has not been explored as a counter electrode materials for dye-sensitized solar cells(DSSCs)due to its lack of electrical conductivity.However,herein,it is reported that Mg O insulator with conductive poly(3,4-ethylenedioxythiophene):polysty-renesulfonate(PEDOT:PSS)exhibited excellent performance as a counter electrode for DSSCs,leading to a high power conversion efficiency of 7.45%.Furthermore,it was revealed that the interface between Mg O and PEDOT:PSS plays an important electro-catalytic role in the Mg O/PEDOT composite counter electrodes.  相似文献   

18.
余佳芮  陈帅  辛星  徐景坤 《应用化学》2020,37(12):1343-1356
二甲基亚砜(DMSO)被称为“万能溶剂”,除了在化学、医学、化妆品等领域的常规应用,在有机电子领域也有展现出特色应用。 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)是一类卓越的水分散性导电聚合物材料,具有优异的可加工性、混合性、生物兼容性、成膜性以及可商业规模生产等优势,被广泛应用于抗静电涂层、透明电极、有机太阳能电池、超级电容、生物传感等新材料和绿色能源领域。 DMSO对调控PEDOT:PSS薄膜的形貌、导电、热电、功函,界面接触、力学、自修复等性能具有重要作用。 基于我们团队及国内外学者在本领域的研究成果,本文系统综述了DMSO对PEDOT及其衍生物:PSS(PEDOTs:PSS)作用的效果及其机制,探讨了应用中面临的问题与挑战。  相似文献   

19.
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) films exhibit a complex structure of interconnected conductive PEDOT domains in an insulating PSS matrix that controls their electrical properties. This structure is modified by a water rinse, which removes PSS with negligible PEDOT loss. Upon PSS removal, film thickness is reduced by 35%, conductivity is increased by 50%, and a prominent dielectric relaxation is eliminated. These results suggest that the removed PSS is not associated with PEDOT and that the conductive domain network is not substantially altered by the removal of a significant fraction of insulator. The removal of PSS may benefit organic light emitting diode fabrication by reducing acid attack on indium tin oxide electrodes and lead to more robust performance in switching circuits by extending the working frequency range.  相似文献   

20.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号