首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A series of novel high molecular weight fluorinated co‐polyimides (Co‐PIs) containing styryl side chain based on 1,3‐bis(2‐trifluoromethyl‐4‐aminophenoxy)‐5‐(2,3,4,5‐tetrafluorophenoxy)benzene (6FTFPB) were successfully synthesized. The weight‐average molecular weights (Mws) and polydispersities of the co‐polyimides were in the range 8.93–10.81 × 104 and 1.33–1.82, respectively. The co‐polyimide film showed excellent solubility in organic solvents, high tensile properties (tensile strength exceeded 91 MPa), excellent optical transparency (cutoff wavelength at 332–339 nm and light transparencies above 89% at a wavelength of 550 nm), and high thermal stability (5% thermal weight‐loss temperature up to 510 °C). The casting and spinning films could be cross‐linked by thermal curing. The cured films show better combination property (including excellent resistance to solvents) than that of co‐polyimides. For instance, the glass transition temperature of Co‐PI‐1 (the molar weight ratio of 6FTFPB was 30%) increased from 217 to 271 °C, the tensile strength enhanced from 94 to 96 MPa, the 5% thermal weight‐loss temperature improved from 514 to 525 °C. Moreover, after cured, Co‐PI‐1 film also has a coefficient of thermal expansion (CTE) value of 60.3 ppm °C?1, low root mean square surface roughness (Rq) at 4.130 nm and low dielectric constant of 2.60. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 349–359  相似文献   

2.
A new aromatic diamine, 4-(4-trifluoromethyl)phenyl-2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]pyridine, was synthesized by a modified Chichibabin reaction of 4-(4-nitro-2-trifluoromethylphenoxy)acetophenone with 4-triflouromethylbenzaldehyde, followed by catalytic reduction. A series of fluorinated pyridine-containing aromatic poly(ether imide)s (PEIs) were prepared from the diamine monomer with various aromatic dianhydrides via conventional two-step thermal imidization method. The resulting PEIs had inherent viscosities values of 0.68–0.90 dL/g, and could be cast and thermally converted into transparent, flexible, and tough polymer films. These PEIs were predominantly amorphous, had good solubility in common solvents such as NMP, DMAc and m-cresol at room temperature, and displayed excellent thermal stability with the glass transition temperatures of 258–315?°C, the temperatures at 5% weight loss of 550–585?°C, and the residue of higher than 55% at 750?°C in nitrogen. Moreover, the PEIs films showed outstanding mechanical properties with tensile strengths of 74.8–103.5?MPa, tensile moduli of 1.08–1.45?GPa, and elongations at break of 10.6–24.4%. These PEIs also exhibited low dielectric constants of 2.81–2.98 (1?MHz) and water uptake 0.39–0.68%, as well as high optical transparency with the UV cutoff wavelength in the 350–378?nm range and the wavelength of 80% transparency in the range of 412–510?nm.  相似文献   

3.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

4.
Polyimides (PI's) with low-dielectric constant and excellent organic solubility have broad application prospects in the electronic field. Herein, this study designed a series of novel, low dielectric, organic soluble PI films by creatively introducing fluorene and pyridine ring into diamine monomers. Because of the noncoplanar structure of fluorenyl and the polarization of pyridine ring, PI films achieved a low-dielectric constant (2.22–3.09 at 10 MHz) and excellent organic solubility. Even in some organic solvents with low-boiling points, these PI films still exhibited outstanding solubility. In addition, all the films possessed high-tensile strength (≈120 MPa) and excellent optical transparency (>70%, 450 nm). It was worth noting that the glass transition temperature of films was all above 280°C and 5% weight loss temperature (T5%) was at 486–553°C. In general, the novel high-performance low-dielectric PI films are expected to be used in the field of microelectronics.  相似文献   

5.
A series of novel polyamides 3a – 3d containing 4‐tert‐butyltoluene moiety, were prepared using the phosphorylation polycondensation technique. FT‐IR and 1H NMR techniques were used to investigate the chemical structures of 3a–3d . The results confirmed that they agreed with the proposed structures for 3a – 3d completely. The 3a – 3d had inherent viscosities ranging from 0.71 to 1.67 dL·g−1. All the polyamides showed excellent solubility, with the dissolvability at a concentration of 10 wt% in most amide polar solvents. Flexible and tough polyamide films could be prepared by casting from DMAc (N,N‐dimethylacetamide) solvent. Their films were nearly colorless and exhibited high optical transparency, with the UV cutoff wavelength in the range of 346–363 nm and transmittance higher than 80% at 450 nm. They also exhibited high glass transition temperatures in the range of 310–343°C and the onset decomposition temperatures in the range of 435–462°C in nitrogen atmosphere. Meanwhile, these polyamide films possess good mechanical properties with tensile strengths of 76.4–86.1 MPa and elongations at break of 11.2%–27.3%. Due to those properties, these polyamides could be considered as photoelectric and microelectronic materials.  相似文献   

6.
A novel aromatic diamine containing fluorine and trifluoromethyl groups, α-bis(4-amino-3,5-difluorophenyl)-4-(trifluoromethyl)phenylmethane (1), was synthesized. Based on diamine 1 and four aromatic dianhydrides, a series of polyimides (PI) with high fluorine content were prepared via a one-step high-temperature polycondensation procedure. These obtained PIs were readily soluble in a variety of organic solvents, and they could afford flexible and strong films with low dielectric constants (2.57–2.84 at 1 MHz) and low moisture absorptions (0.23–0.45%). Thin films of these PIs exhibited high optical transparency and light color, with the cutoff wavelength at 311–354 nm and transmittance higher than 83% at 450 nm. Moreover, these PIs possessed eminent thermal stability and good mechanical properties.  相似文献   

7.
A new aromatic diamine containing trifluoromethyl and methyl groups, namely α,α‐bis(4‐amino‐3‐methylphenyl)‐4‐(trifluoromethyl)phenylmethane ( 1 ), was synthesized from 2‐methylaniline and 4‐(trifluoromethyl)benzaldehyde. A series of fluorinated polyimides (PIs) were prepared from the diamine with four commercially available aromatic tetracarboxylic dianhydrides using a one‐step high‐temperature polycondensation procedure. These obtained PIs showed excellent solubility, with the dissolvability at a concentration of 10 wt% in most solvents, and they could afford flexible and strong films. Thin films of these PIs exhibited high optical transparency and light color, with the cutoff wavelength at 324–357 nm and transmittance higher than 74% at 450 nm. Moreover, these PIs possessed eminent thermal stability and good mechanical properties.  相似文献   

8.
A novel aromatic diamine containing bulky lateral phenyl unit and fluorine groups ortho-substituted to the amino groups in the structure, α,α-bis(4-amino-3,5-difluorophenyl)phenylmethane (4FMA) was synthesized and characterized. 4FMA was polymerized with four aromatic dianhydrides to afford a series of polyimides (PIs) via a one-step high-temperature polycondensation procedure. All the PIs were amorphous and showed good solubility not only in polar aprotic solvents, but in many common solvents, such as cyclopentanone and tetrahydrofuran. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and tensile modulus in the ranges 85-107 MPa, 4-7%, 1.7-2.8 GPa, respectively. The polyimides also exhibited high-Tg (292-338 °C), good thermal stability, good dielectric strength, low dielectric constants, and low water uptakes due to the introduction of the polyfluorinated substituents in the polymer backbone. As expected, the PI films showed good transparency in the UV-Vis light region with cutoff wavelength as low as 318 nm and transmittance higher than 60% at 450 nm. PI-4 derived from 4FMA and fluorinated dianhydride 6FDA exhibited low light-absorption in the near-infrared region, especially at the optocommunication wavelength of 1310 nm and 1550 nm. The remarkable combined properties indicate their potential applications in microelectronic and optoelectronic fabrications.  相似文献   

9.
Novel fluorinated polyimides (PIs) were prepared from 9,9-bis(4-amino-3,5-difluorophenyl)fluorene with three aromatic dianhydrides via a one-step high-temperature polycondensation procedure. These obtained PIs showed excellent solubility and could be readily soluble in a variety of organic solvents such as NMP, DMAc, DMF, CHCl3, CH2Cl2 and THF. All the PIs could afford flexible and strong films with low dielectric constants (2.62-2.79 at 1 MHz) and low moisture absorptions (0.18-0.41%). Thin films of these PIs exhibited high optical transparency and light color, with the cutoff wavelength at 341-355 nm and transmittance higher than 80% at 450 nm. Meanwhile, these PIs possessed eminent thermal stability, with decomposition temperatures (Td) above 570 °C in both air and nitrogen atmospheres and glass transition temperatures (Tg) beyond 376 °C. Moreover, these fluorinated PI films showed low surface free energy and hydro-oleophobic character. The contact angles on the films for water and glycerol were in the range of 102.3-107.9° and 94.0-100.3°, respectively. In comparison with the analogous PI non-containing fluorine group, these fluorinated PIs showed better solubility, higher optical transparency, lower dielectric constants and lower surface free energy.  相似文献   

10.
Abstract

Based on the aromatic diamine monomer containing di-tert-butylbenzene and methyl groups, this work proposes its polymerization with four different dicarboxylic acids. The prepared polyamides (PA 3a–3d) were characterized by GPC, FTIR, 1H NMR, mechanical, thermal, optical and gas separated techniques. They exhibited high solubility and good optical transparency. Their optical transmittance at 450?nm wavelength was in the range of 81.4%–86.8%, and the cutoff wavelength was in the range of 327–352?nm. The membranes also had good mechanical properties with tensile strength of 79.7–91.4?MPa, elongations at breaks of 9.0–10.9% and initial modulus of 1.5–1.9?GPa. Meanwhile, these membranes possessed good thermal properties with glass transition temperature (T g) values of 226–246?°C. The permeability of CH4, N2, and CO2 for these membranes was tested by constant pressure-variable volume method. The PA 3d containing tert-butyl moiety in the diacid units exhibited highest permeability (PCO2 = 31.4 and PN2 = 1.9) whereas PA 3c containing hexafluoroisopropylidene moiety exhibited highest selectivity (CO2/CH4 = 22.2).  相似文献   

11.
A diamine containing heterocyclic pyridine and unsymmetrical carbazole substituents, 4‐(9‐ethyl‐3‐carbazole)‐2,6‐bis(4‐aminophenyl)pyridine ( CBAPP ), was prepared for use in the synthesis of poly(pyridine‐imide)s PI‐1–8 by direct polycondensation with dianhydrides in N,N‐dimethylacetamide (DMAc). The poly(pyridine‐imide)s derived from the diamine are highly soluble in solvents such as N‐Methyl‐2‐pyrrolidone (NMP) and DMAc at room temperature. Noncoplanar polyimide (PI‐1) showed excellent solubility, high transparency, and high‐performance mechanical properties. These polymers had relatively high glass transition temperatures and exhibited good thermal stability in both nitrogen (Td10 > 470 °C) and air (Td10 > 450 °C). The PI‐3~5 cannot form flexible and tough films due to the unsymmetrical carbazole moiety, rigid structure, and polar–polar interaction. However, through copolymerization technique these polymers (PI‐6~8) could be enhanced through the solubility, mechanical, and thermal properties. The optical properties included a strong orange fluorescence (540 nm) after protonation with acid. When the HCl concentration was increased, a new absorption band at approximately 350 nm appeared, and the intensity of the fluorescent peak at 380 nm observed in the neutral polymer solution decreased, along with the appearance of the new fluorescent peak at 540 nm. The poly(pyridine‐imide)s presented here showed only slight fluorescence quenching in the presence of methanol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 405–412  相似文献   

12.
A fluorinated diamine monomer containing flexible ether linkage and bulky trifluoromethyl substituents, namely, bis(4‐amino‐2‐trifluoromethylphenyl) ether (a), is employed to react with nonfluorinated 1,4‐bis(3,4‐dicarboxyphenoxy) benzene dianhydride (3) and CF3‐free 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl] propane dianhydride (4), respectively, to prepare 2 novel soluble and optically transparent semi‐fluorinated poly (ether imide)s (PEIs; 3a and 4a). Compared with the corresponding PEIs based on nonfluorinated 4,4′‐diaminodiphenyl ether (b) and CF3‐free pyromellitic dianhydride (5), the novel semifluorinated PEIs 3a and 4a not only display better solubility in some organic solvents and higher optical transparency with cutoff absorption wavelength (λ0) below 370 nm but also maintain outstanding mechanical properties and thermal stability. 3a and 4a have tensile strength beyond 80 MPa and possess glass‐transition temperatures (Tg) beyond 210°C, coupled with the temperatures of 5% weight loss (T5%) exceeding 500°C. It is also found that 3a and 4a exhibit contact angles against water beyond 110° and water absorptions below 0.8% together with dielectric constants less than 3.2.  相似文献   

13.
WANG  Chenyi  LI  Guang  JIANG  Jianming 《中国化学》2009,27(11):2255-2260
Based on the synthesis of a rigid aromatic diamine, α,α‐bis(4‐aminophenyl)‐4‐(t‐butyl)toluene ( 1 ), a novel polyimide (PI) 3 was prepared from this diamine monomer and 4,4′‐oxydiphthalic dianhydride via a one‐step high‐temperature polycondensation. FT‐IR, 1H NMR and elemental analysis were used to investigate the chemical structures of 1 and 3 . The results confirmed that they agreed with the proposed structures for both 1 and 3 completely. The obtained PI 3 showed excellent solubility in most common solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, dichloromethane and tetrahydrofuran. The resulting strong and flexible film exhibited high thermal stability with the glass transition temperature at 317°C and the temperature at 10% weight loss beyond 519°C in both air and nitrogen atmospheres. Moreover, the film also showed high optical transparency, low dielectric constant (3.13 at 1 MHz), low water absorption (0.40%) and hydrophobic character.  相似文献   

14.
张刚  杨杰 《高分子科学》2014,32(3):292-304
Highly refractive and transparent polyamides containing thiadiazole units have been developed.These polymers were prepared by a polycondensation reaction of 4,4'-(1,3,4-thiadiazole-2,5-thio) bis(methylene) dibenzoyl chloride(TDTBM-DC) and diamine which contained thioether(―S―) and sulfone units.They showed good thermal stabilities such as a relatively high glass transition temperature of 206-233 °C and a 5% weight-loss temperature(T5%) of 376-395 °C.The optical transmittance of the polymer at 450 nm is higher than 83%.The heterocycle units and plural ―S― linkages provide the polymer with a high refractive index of 1.716-1.725 at 633 nm and a low birefringence of 0.003-0.004.Also they showed improved solubility in polar aprotic solvents and could form moderate strength films with tensile strength of 72.8-83.1 MPa and storage modulus of 1.0-1.8 GPa(at 200 °C).  相似文献   

15.
A novel diamine monomer 1 , 4,4'‐(9H‐fluorene‐9,9‐diyl)‐bis(2‐tert‐butylaniline), was synthesized from 9‐fluorenone and 2‐tert‐butylaniline by the condensation reaction. Then it was polymerized with several commercial aromatic dianhydrides, respectively, to produce polyimides (PIs) by the one‐pot method. The number‐averaged molecular weights of the resulting PIs are in the range of (4.54–8.82) × 104 with polydispersity indices from 2.51 to 4.33 by gel permeation chromatography measurement. They are soluble in many organic solvents and can form transparent and tough films by solution‐casting. The cut‐off wavelengths of UV–vis absorption for the PI films are below 360 nm, which are much lower than that of Kapton film. The light transparency of them is above 90% in the visible light range from 400 to 760 nm. They also display relatively low dielectric constants (from 2.79 to 3.00), low water absorption rates (<1%), and high tensile strength (> 50 MPa). Their excellent solubility and transparency can be attributed to the incorporation of tert‐butyl groups and fluorene units into the rigid backbones of PIs. Simultaneously, they still maintain the high thermal stability (the 5% weight loss temperature in the range from 526 to 539 °C in nitrogen) and the high glass transition temperatures (Tg > 340 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 976–984  相似文献   

16.
A highly refractive and transparent aromatic polyimide (PI) containing a selenophene unit has been developed. The PI was prepared by a two‐step polycondensation procedure from 2,5‐bis(4‐aminophenylenesulfanyl)selenophene (APSP) and 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), and shows high thermal stabilities, such as a relatively high‐glass transition temperature of 189 °C and 5% weight loss temperature (T5%) of 418 °C. The optical transmittance of the PI film at 450 nm is higher than 50%. The selenophene unit provides the PI with a refractive index of 1.7594, which is higher than corresponding PIs containing a thiophene or a phenyl unit because of the high polarizability per unit volume of the selenium atom. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4428–4434, 2009  相似文献   

17.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   

18.
A series of novel polyimides (3ad) were prepared from 3,3′,5,5′-tetramethyl-4,4′-diaminodiphenyl-4”-tert-butyltoluene (1) with four aromatic dianhydrides via a one-step high-temperature polycondensation procedure. The obtained polyimides showed excellent solubility, with the dissolvability at a concentration of 10 wt% in most amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high optical transparency, with the UV cutoff wavelength in the range of 322–350 nm and the wavelength of 80% transparency in the range of 395–414 nm. They also showed low dielectric constant (2.72–2.91 at 1 MHz) and low water absorptions (0.37–0.62%). Moreover, these polyimides possessed high glass transition temperatures (Tg) (above 321 °C) and good thermal stability with 10% weight loss temperatures in the range of 526–547 °C in nitrogen atmosphere. In comparison with the analogous polyimides non-containing 3,3′,5,5′ -tetramethyl pendant groups, the resultant polyimides 3ad showed better solubility, higher optical transparency and lower dielectric constant.  相似文献   

19.
A new disubstituted polyacetylene with indolylazo moieties in its side chains ( 9 ) was synthesized by a post functionalization strategy, which was difficult, or perhaps impossible, to obtain from the direct polymerization of its corresponding monomer. The polymer is soluble in common solvents and thermally stable. The polymer shows good optical transparency with an absorption maximum at 393 nm and a band edge at ~530 nm. Its poled film exhibits a resonant d33 value of 17.9 pm/V and its optical nonlinearity is resistant to thermal decay at up to 147 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5672–5681, 2006  相似文献   

20.
A new unsymmetrical and noncoplanar diamine containing trifluoromethyl and trimethyl groups, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,3,5‐trimethylbenzene ( 2 ), was synthesized using 2,3,5‐trimethylhydroquinone and 2‐chloro‐5‐nitrobenzotrifluoride as starting materials. A series of fluorinated poly(ether imide)s (PEIs) ( 4a–4d ) were prepared from diamine 2 with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained PEIs were readily soluble in most organic solvents and could be solution‐cast into flexible and strong films. The resulting thin films exhibited light color and good optical transparency with a cutoff wavelength of 356–376 nm. They also displayed good thermal stability with glass transition temperatures (Tg) above 281°C, 10% weight loss temperatures in the range of 482–486°C, and the weight residue more than 55% at 800°C in nitrogen. Moreover, they revealed low dielectric constants (2.77–2.93 at 1 MHz) and low moisture absorptions (0.41%–0.57%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号