首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

2.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

3.
[Cp°MoCl4] (Cp° = C5EtMe4) reacts with primary phosphines PH2R to give the paramagnetic phosphine complexes [Cp°MoCl4(PH2R)] [Cp° = C5EtMe4, R = But ( 1 ), 1‐Ad (1‐Ad = 1‐adamantyl; 2 ), Cy ( 3 ), Ph ( 4 ), Mes (Mes = 2, 4, 6‐Me3C6H2; 5 ), Tipp (Tipp = 2, 4, 6‐Pri3C6H2; 6 )]. 1 — 6 were characterized spectroscopically (IR, MS), and X‐ray crystal structures were determined for 1 — 4 and 6 . EPR investigations in liquid and frozen solution confirmed the presence of MoV species, and the data were used to analyze the spin‐density distribution in the first coordination sphere. Complexes 3 and 4 react with two equivalents of NEt3 with formation of [Cp°MoCl23‐P4Cy4H)] ( 7 ) and [Cp°2Mo2(μ‐Cl)2(μ‐P4Ph4)] ( 8 ), respectively, in low yield. Complexes 7 and 8 were characterized by X‐ray crystallography.  相似文献   

4.
The controlled hydrolysis of heteroleptic magnesium amide, LMgN(SiMe3)2 (L = CH[C(Me)N(2,6‐iPr2C6H3)]2) with water afforded the corresponding hydroxide [LMg(OH)·THF]2 as air and moisture sensitive compound. The presence of a sterically bulky β‐diketiminate ligand prevents the self‐condensation reaction of this hydroxide complex. Single crystal X‐ray analysis shows that the hydroxide is dimeric in the solid state. Reaction of the magnesium amide or LMg(Me)·OEt2 with LAlMe(OH) generates the heterobimetallic species containing the Mg–O–Al moiety. Additionally, the reaction of methylmagnesiumchloride with the free ligand leads to complex L′MgCl (L′ = CH[Et2NCH2CH2N(CMe)]2). As revealed by the crystal structure, L′MgCl is a solvent free monomeric magnesium chloride complex that is analogues to the Grignard reagent.  相似文献   

5.
We report a detailed study of the reactions of the Ti?NNCPh2 alkylidene hydrazide functional group in [Cp*Ti{MeC(NiPr)2}(NNCPh2)] ( 8 ) with a variety of unsaturated and saturated substrates. Compound 8 was prepared from [Cp*Ti{MeC(NiPr)2}(NtBu)] and Ph2CNNH2. DFT calculations were used to determine the nature of the bonding for the Ti?NNCPh2 moiety in 8 and in the previously reported [Cp2Ti(NNCPh2)(PMe3)]. Reaction of 8 with CO2 gave dimeric [(Cp*Ti{MeC(NiPr)2}{μ‐OC(NNCPh2)O})2] and the “double‐insertion” dicarboxylate species [Cp*Ti‐{MeC(NiPr)2}{OC(O)N(NCPh2)C(O)O}] through an initial [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(O)O}], the congener of which could be isolated in the corresponding reaction with CS2. The reaction with isocyanates or isothiocyanates tBuNCO or ArNCE (Ar=Tol or 2,6‐C6H3iPr2; E=O, S) gave either complete NNCPh2 transfer, [2+2] cycloaddition to Ti?Nα or single‐ or double‐substrate insertion into the Ti?Nα bond. The treatment of 8 with isonitriles RNC (R=tBu or Xyl) formed σ‐adducts [Cp*Ti{MeC(NiPr)2}(NNCPh2)(CNR)]. With ArF5CCH (ArF5=C6F5) the [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(ArF5)C(H)}] was formed, whereas with benzonitriles ArCN (Ar=Ph or ArF5) two equivalents of substrate were coupled in a head‐to‐tail manner across the Ti?Nα bond to form [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(Ar)NC(Ar)N}]. Treatment of 8 with RSiH3 (R=aryl or Bu) or Ph2SiH2 gave [Cp*Ti{MeC(NiPr)2}{N(SiHRR′)N(CHPh2)}] (R′=H or Ph) through net 1,3‐addition of Si? H to the N? N?CPh2 linkage of 8 , whereas reaction with PhSiH2X (X=Cl, Br) led to the Ti?Nα 1,2‐addition products [Cp*Ti{MeC(NiPr)2}(X){N(NCPh2)SiH2Ph}].  相似文献   

6.
The reaction of AlCl3 with Li2PR (R = SiiPr3, SiMeiPr2) in a mixture of heptane and ether yields in the polycyclic compounds [(AlCl)43‐PR)2(μ‐PR)2(Et2O)2]( 1a : R = SiiPr3; 1b : SiMeiPr2) with a ladder‐shaped Al4P4 core. The coordination sphere of the outer aluminium atoms in these compounds is completed by ether ligands. In contrast, the reaction of AlCl3 with Li2PSiiPr3 in pure heptane yields in the formation of the hexagonal prismatic compound [(AlCl)63‐PSiiPr3)6]( 2 ). 1 and 2 were characterized by single crystal X‐ray diffraction analysis as well as by 31P{1H} and 27Al NMR spectroscopy. The structure determining effect of the solvent can be rationalized by quantumchemical calculations, which also show that the hexagonal prismatic structure is the most stable of the investigated oligomers in absence of ether.  相似文献   

7.
The vinyl carbenoid H2C=CBr(Li) has been used as key precursor to prepare a geminal C(sp2)-bridged phosphine-borane. Starting from bromoethene, two sequences of lithiation/electrophilic trapping, with ClPiPr2 and FBMes2 respectively, affords iPr2P–C(=CH2)–BMes2 3 [Mes = 2,4,6-(H3C)3C6H2]. This new phosphine-borane 3 was characterized by multi-nuclear NMR and mass spectroscopy. It adopts a monomeric open structure without P→B interaction. A few crystals of a secondary product 4 were analyzed by X-ray diffraction, revealing an unusual dimeric structure.  相似文献   

8.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

9.
Oxidation of Triisopropylphosphane with Iodine: The Role of Dry or Moist Solvent i‐Pr3P ( 1 ) and iodine give i‐Pr3PI2 ( 2 ). In crystals obtained from CH2Cl2 solution, ion pairs [i‐Pr3PI+I] of 2 exhibiting I…I interactions are linked by CH2Cl2 molecules. With a second equivalent of iodine, i‐Pr3PI+ I3 ( 3 ) is formed; the reaction of 2 with AgSbF6 provides i‐Pr3PI+SbF6 ( 6 ). The presence of moisture and air leads to the formation of i‐Pr3POH+ salts. Solid i‐Pr3POH+I ( 4 ) exhibits P–O–H…I cation‐anion contacts, solid (i‐Pr3PO)2H+I3 ( 5 ) contains a centrosymmetric P=O…H…O=P‐bridged cation. Distinguishing i‐Pr3PI+ salts 2 , 3 from hydrolysis products 4 , 5 by 31P‐NMR in reaction mixtures is not trivial, because both kinds of cations exihibit similar 31P‐NMR shifts and both participate in interactions with their anions, and in equilibria with uncharged donors: rapid I+ transfer reactions and I…I soft‐soft interactions involving 1 , and rapid H+ transfer reactions and hydrogen bonds involving i‐Pr3P=O ( 7 ).  相似文献   

10.
A series of new germylene compounds has been synthesized offering systematic variation in the σ‐ and π‐capabilities of the α‐substituent and differing levels of reactivity towards E?H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn)] ( 1 – 6 : ERn=NHDipp, CH(SiMe3)2, P(SiMe3)2, Si(SiMe3)3 or B(NDippCH)2; terphenyl=C6H3Mes2‐2,6=ArMes or C6H3Dipp2‐2,6=ArDipp; Dipp=C6H3iPr2‐2,6, Mes=C6H2Me3‐2,4,6), while the related complex [{(Me3Si)2N}Ge{B(NDippCH)2}] ( 8 ) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X‐ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ‐donating boryl or silyl ancillary donors. HOMO–LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)‐germylene system [ArMesGe{B(NDippCH)2}] ( 6 ‐Mes), which features a wide C‐Ge‐B angle (110.4(1)°) and (albeit relatively weak) ancillary π‐acceptor capabilities, has the smallest HOMO–LUMO gap (119 kJ mol?1). These features result in 6 ‐Mes being remarkably reactive, undergoing facile intramolecular C?H activation involving one of the mesityl ortho‐methyl groups. The related aryl(silyl)‐germylene system, [ArMesGe{Si(SiMe3)3}] ( 5 ‐Mes) has a marginally wider HOMO–LUMO gap (134 kJ mol?1), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E?H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies imply that the use of the very strongly σ‐donating boryl or silyl substituents is an effective strategy for rendering metallylene complexes competent for E?H bond activation.  相似文献   

11.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

12.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom.  相似文献   

13.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

14.
The isolable complex [Os(PHMes*)H(PNP)] (Mes*=2,4,6‐tBu3C6H3; PNP=N{CHCHPtBu2}2) exhibits high phosphinyl radical character. This compound offers access to the phosphinidene complex [Os(PMes*)H(PNP)] by P?H proton coupled electron transfer (PCET). The P?H bond dissociation energy (BDE) was determined by isothermal titration calorimetry and supporting DFT computations. The phosphinidene product exhibits electrophilic reactivity as demonstrated by intramolecular C?H activation.  相似文献   

15.
The first stable base-free terminal uranium phosphinidene metallocene is presented; and its structure and reactivity have been studied in detail and compared to that of the corresponding thorium derivative. Salt metathesis reaction of the methyl iodide uranium metallocene Cp’’’2U(I)Me ( 2 , Cp’’’=η5-1,2,4-(Me3C)3C5H2) with Mes*PHK (Mes*=2,4,6-(Me3C)3C6H2) in THF yields the base-free terminal uranium phosphinidene metallocene, Cp’’’2U=PMes* ( 3 ). In addition, density functional theory (DFT) studies suggest substantial 5f orbital contributions to the bonding within the uranium phosphinidene [U]=PAr moiety, which results in a more covalent bonding between the [Cp’’’2U]2+ and [Mes*P]2− fragments than that for the related thorium derivative. This difference in bonding besides steric reasons causes different reactivity patterns for both molecules. Therefore, the uranium derivative 3 may act as a Cp’’’2U(II) synthon releasing the phosphinidene moiety (Mes*P:) when treated with alkynes or a variety of hetero-unsaturated molecules such as imines, thiazoles, ketazines, bipy, organic azides, diazene derivatives, ketones, and carbodiimides.  相似文献   

16.
The monomeric β‐diketiminate zinc complex (Mes)NacNacZnMe 1 (MesNacNac = {[2,6‐(2,4,6‐Me3‐C6H2)N(Me)C)]2CH}) was obtained in almost quantitative yield from the reaction of ZnMe2 with (Mes)NacNacH. Reaction of 1 with either Me3NHCl or a solution of HCl in Et2O yielded (Mes)NacNacZnCl 2 , whereas (Mes)NacNacZnI 3 was obtained from the reaction of 1 with I2. 1 – 3 were characterized by elemental analyses, mass and multinuclear (1H, 13C{1H}) NMR spectroscopy, 3·THF also by single crystal X‐ray analysis.  相似文献   

17.
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2SiMe3)(N‘Ar)2}] (AM=K, Rb, or Cs) [N‘Ar=N(SiMe3)(Dipp), where Dipp=2,6-iPr2-C6H3] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N‘Ar)}], [{AM(N‘Ar)⋅TMEDA}], and [{AM(N‘Ar)⋅PMDETA}] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2O)2Na(nBu)Mn[(N‘Ar)2], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.  相似文献   

18.
Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ ( 1 ), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) ( 2 ). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) ( 4 , TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) ( 8 , oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.  相似文献   

19.
Synthesis and Metalation of the Diaminosiloxane O(SiiPr2NH2)2 The 1,3‐diaminoldisiloxane O(SiiPr2NH2)2 ( 1 ) was obtained from the reaction of O(SiiPr2Cl)2 with NH3. The reactions of 1 with AlEt3 or GaEt3 produced the compounds [O{SiiPr2N(H)MEt2}{SiiPr2NMEt}]2 ( 2 : M = Al; 3 : M = Ga). The crystal structures of 2 and 3 were determined by single crystal X‐ray diffraction, showing a polycyclic M4N4Si4O2 core structure of these molecules.  相似文献   

20.
Facile access to dimeric heavier aluminum chalcogenides [(NHC)Al(Tipp)-μ-Ch]2 (NHC=IiPr (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, IMe4 (1,3,4,5-tetramethylimidazol-2-ylidene); Tipp=2,4,6-iPr3C6H2; Ch=Se, Te) by treatment of NHC-stabilized aluminum dihydrides with elemental Se and Te is reported. The higher affinity of IMe4 in comparison with IiPr toward the Al center in [(NHC)Al(Tipp)-μ-Ch]2 can be used for ligand exchange. Additionally, the presence of excess IMe4 allows for cleavage of the dimers to form a rare example of a neutral multiply bonded heavier aluminum chalcogenide in the form of a tetracoordinate aluminum complex, (IMe4)2(Tipp)Al=Te. This species reacts with three equivalents of CO2 across two Al−CNHC and the Al=Te bond affording a pentacoordinate aluminum complex containing a dianionic tellurocarbonate ligand [CO2Te]2−, which is the first example of tellurium analogue of a carbonate [CO3]2−.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号