首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses and Crystal Structures of [Pd9As8(PPh2)8] and [Pd9Sb6(PPh3)8] [PdCl2(PPh3)2] reacts with As(SiMe3)3 to give the new cluster [Pd9As8(PPh3)8] ( 4 ). 4 has been characterized by X-ray crystal structure analysis. It is a molecule in which four [Pd2(PPh3)2]-units are bridged by As2-units. A further Pd atom is located in the centre of the cluster. 4 crystallizes in the space group C2/c with four formula units per unit cell. The lattice constants at 200 K are: a = 3 970.6(3), b = 1 648.90(16), c = 3 266.30(20) pm, β = 131,44(4)°. The reaction of [PdCl2(PPh3)2] with Sb(SiMe3)3 yields [Pd9Sb6(PPh3)8] ( 5 ). 5 consists of a body centred cubic Pd9-cluster. All of the cube faces are capped by μ4-Sb-ligands. 5 crystallizes in the space group Pn3 with two formula units per unit cell. The lattice constants at 200 K are: a = b = c = 1 995.4(2) pm.  相似文献   

2.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

3.
Synthesis and Crystal Structures of New Phosphorus‐bridged Bimetallic Clusters of the Elements Mercury and Iron The reaction of [Fe(CO)4(HgX)2] (X = Cl, Br) with P(SiMe3)2tBu in the presence of tertiary phosphines and phosphinium salts leads to the ionic compounds [PPh4]2[Hg12{Fe(CO)4}8(PtBu)4X2] (X = Cl, Br) ( 1 , 2 ). If [Fe(CO)4(HgX)2] reacts with P(SiMe3)2tBu the polymeric polynuclear complex [Hg15{Fe(CO)4}3(PtBu)8Br8]n ( 3 ) as well as the twenty mercury‐ and eight iron‐atoms containing [Hg20{Fe(CO)4}8(PtBu)10X4]‐clusters (X = Br, Cl) ( 4 , 5 ) are formed. The reaction of [Fe(CO)4(HgX)2] with LiPPh2 yields to the phosphanido‐bridged [Hg4{Fe(CO)4}2(PPh2)2Cl2] ( 6 ), where as the use of LiP(SiMe3)Ph leads to the diphosphinidene‐bridged cluster [Li(thf)4]2[Hg10{Fe(CO)4}6(P2Ph2)2Br6] ( 7 ). The structures of the compounds 1–7 were characterized by X‐ray single crystal structure analysis.  相似文献   

4.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

5.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

6.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

7.
New cluster complexes of iron [Fe3Q(AsCp*)(CO)9] (Q = Se, Te, Cp* = C5(CH3)5) are synthesized with the square pyramidal cluster core Fe3QAs. A suitable procedure of the synthesis of known heterochalcogenide [Fe3QS(CO)9] clusters is developed. Monosubstituted [Fe3Q(AsCH3)(CO)8(PPh3)] and disubstituted [Fe3Q(AsCH3)(CO)7(PPh3)2] clusters formed in the reactions of [Fe3Q(AsCH3)(CO)9] with PPh3 are studied. In monosubstituted clusters, the phosphine ligand is coordinated in the axial position to the Fe atom in the base of the Fe3QAs square pyramid, while in disubstituted clusters, both phosphine ligands coordinate the Fe atoms in the pyramid base, one ligand being in the axial and another one in the equatorial position. The NMR data support the possibility of migration of the Fe-Fe bonds in a triangle in the cluster core in the case of disubstituted clusters.  相似文献   

8.
The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9(PPh3)8H2+ nanocluster, formed by addition of a hydride to the well-characterized Au9(PPh3)83+. Using gas-phase infrared spectroscopy, we were able to unambiguously isolate Au9(PPh3)8H2+ and Au9(PPh3)8D2+, revealing an Au−H stretching mode at 1528 cm−1 that shifts to 1038 cm−1 upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster-H bonding that has some square-well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm−1 in the Au−H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9(PPh3)8H2+, at least with regard to its surface reactivity.  相似文献   

9.
The six‐membered ring Hg3Te3 of [Hg3Cl3(μ‐TePh)3]·2 DMSO {(Ph = C6H5; DMSO = (CH3)2SO} was opened by redissolution with DMSO, reacting with Co[Hg(SCN)4] and affording polymeric . The monoclinic novel compound belong to the space group P21/n and assembles in a bidimensional lattice tetrahedral HgII(SCN)2Te2‐ and octahedral CoII(NCS)4(DMSO)2‐chains linked trough SCN bridges along the crystallographic axis b and diagonally to the ac axes. The structure of [(DMSO)2Co(NCS)4(Hg—TePh)2]n is limited by the DMSO ligands in the axial positions of the Co‐octahedrons.  相似文献   

10.
New Arsinidene-bridged Multinuclear Cluster Complexes of Ag and Au. The Crystal Structures of [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3, PMenPr2, PnPr3), [M4(As4Ph4)2(PR3)4], (M = Ag, PR3 = PEt3, PnPr3; M = Au, PR3 = PnPr3), [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] The reaction of AgCl with PhAs(SiMe3)2 in presence of tertiary phosphines (PR3) leads to arsinidene-bridged silver clusters with the composition [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3 1 , PMenPr2 2 , PnPr3 3 ). Further it is possible to obtain the multinuclear complexes [Ag4(As4Ph4)2(PR3)4], (PR3 = PEt3 4 , PMenPr2 5 ). In analogy to that [PMe3AuCl] reacts with PhAs(SiMe3)2 and PnPr3 to form the compound [Au4(As4Ph4)2(PnPr3)4] 6 , which is isostructurell to 4 and 5 . The gold cluster [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] 7 was obtained from the same solution. The structures were characterized by X-ray single crystal structure analysis. (Crystallographic data see “Inhaltsübersicht”)  相似文献   

11.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

12.
Ruthenium carbonyl triphenylphosphine complexes Ru2(CO)6−n (PPh3) n {μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} (n=1, 2) were obtained by the reaction of complex Ru2(CO)6{μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} containing the ruthenacyclopentadiene moiety with PPh3 in refluxing toluene. The complexes were characterized by IR and by1H,13C, and31P NMR spectroscopy, and by X-ray analysis. The monophosphine derivative is identical to the complex formed by fragmentation of the Ru3(CO)8(PPh3){μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} cluster and contains the PPh3 ligand at the ruthenium atom of the ruthenacyclopentadiene moiety. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1836–1843, September, 1998  相似文献   

13.
Deprotonation of Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph Cy) for Synthesis of Heteronuclear Manganese-Gold Clusters with Mn2Aun Cores (n = 1–3) The dimanganese complexes Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph, Cy) have been deprotonated with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in tetrahydrofuran solution at 20°C to give the anions [Mn2(μ-PR2)(CO)8]?, which were isolated as tetraethylammonium salts. Both dimanganese complexes and the related anions were measured by cyclic voltammetry. The treatment of the aforementioned dimanganese complexes in thf solution with Lir' (R =Me, Ph) and subsequently with PPh3AuCl gave at 20°C three types of products: Mn2(μ-PR2(CO)8(AuPPh3),Mn2(μ-PR2)(μ-C(R′)O)(CO)6-(AuPPh3)2 and Mn2(μ-PR2)(CO)6(AuPPh3)3. The newly prepared substances were characterized by means of IR-, UV/VIS, 31P NMR data. The results of single X-ray analyses showed for the three-membered metal ring compound Mn2(μ-PPh2)(CO)8(AuPPh3) an uni-fold bridged σ(Mn? Mn) bond length of 306.7(3) pm, the metallatetrahedron complex Mn2(μ-PPh3)(μ-C(Ph)O(CO)6(AuPPh3)2 a twofold bridged σ(Mn? Mn) bond length of 300.6(4) pm and the trigonal-bipyramidal cluster Mn2(μ-Pph2)(CO)6(AuPPh3)3 an uni-fold bridged π(Mn? Mn) bond length of 274.7(3) pm. The Mn? Au bonds of these substances are accompanyied by semi-bridging CO ligands which are signified through short Au…C contact lengths in the range of 251 to 270 pm. In the substance with the Mn2Au2 metallatetrahedron core exists, additionally, such a contact with the acylic C atom of C(Ph)O bridging group of 263.4(18) pm. Such contact lengths were compared for corresponding dimanganese and dirhenium complexes.  相似文献   

14.
Mercury(II) complexes with 4,4′‐bipyridine (4,4′‐bipy) ligand were synthesized and characterized by elemental analysis, and IR, 1H‐ and 13C‐NMR spectroscopy. The structures of the complexes [Hg3(4,4′‐bipy)2(CH3COO)2(SCN)4]n ( 1 ), [Hg5(4,4′‐bipy)5(SCN)10]n ( 2 ), [Hg2(4,4′‐bipy)2(CH3COO)2]n(ClO4)2n ( 3 ), and [Hg(4,4′‐bipy)I2]n ( 4 ) were determined by X‐ray crystallography. The single‐crystal X‐ray data show that 2 and 4 are one‐dimensional zigzag polymers with four‐coordinate Hg‐atoms, whereas 1 is a one‐dimensional helical chain with two four‐coordinate and one six‐coordinate Hg‐atom. Complex 3 is a two‐dimensional polymer with a five‐coordinate Hg‐atom. These results show the capacity of the Hg‐ion to act as a soft acid that is capable to form compounds with coordination numbers four, five, and six and consequently to produce different forms of coordination polymers, containing one‐ and two‐dimensional networks.  相似文献   

15.
Colourless needles of mercurous dimethylglyoximato nitrate, Hg2(Dmg)2(NO3)2, grow from a diluted nitric acid solution of mercurous nitrate and dimethylglyoxime. The crystal structure (triclinic, P1¯, a = 728.50(13), b = 1066.8(2), c = 1167.9(2) pm, α = 93.78(2)°, β = 94.16(2)°, γ = 98.61(2)°, Rall = 0, 0726) contains the cations [Hg2(Dmg)2]2+ and “non‐coordinating” (NO3) anions. In the cation, two neutral dimethylglyoxime molecules coordinate bidentately with Hg—N distances in the narrow range of 236 to 239 pm to the mercurous ion, Hg22+, which exhibits a Hg—Hg bond distance of 252.23(8) pm).  相似文献   

16.
Summary Carbon monoxide reacts with the cationic dinitrosyls [M(NO)2(PPh3)2]+ (M = Rh, Ir) under ambient conditions to produce CO2, N2O and the tricarbonyl cations, (M(CO)3(PPh3)2]+. The cationic tricarbonyls are reconverted into the dinitrosyl reactants on treatment with NO atca. 80°. The Ru(NO)2(PPh3)2 and Os(NO)2(PPh3)2 complexes react similarly with CO but under more vigorous conditions whereas the corresponding dinitrosyls of cobalt and iron do not undergo this reaction under similar conditions. A pentacoordinate dinitrosyl intermediate [M(NO)2(CO)(PPh3)2]n+ is proposed and a mechanism for the catalytic oxidation of CO by NO is presented. Studies of Pt(N2O2)PPh3)2 establish that a dinitrogcn dioxide intermediate, produced by the coupling of two nitrosyl ligands, is reasonable.  相似文献   

17.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

18.
This work reports the syntheses and the first crystal structures of the cationic carbone adducts [FC(PPh3)2]+ and [BrC(PPh3)2]+ and the protonated dication [FC(H)(PPh3)2]2+, which are derived from the carbone C(PPh3)2. Quantum chemical calculations and bonding analyses were carried out for the series of cations [AC(PPh3)2]+ and dications [AC(H)(PPh3)2]2+, where A=H, Me, F, Cl, Br, I. The bonding analysis suggests that the cations are best described as phosphane complexes L→(CA)+←L (L=PPh3), which are related to the neutral borylene adducts L→(BA)←L (L=cyclic carbene; A=H, aryl) that were recently isolated. The carbone adducts [AC(PPh3)2]+ possess a π electron lone pair at carbon and they can easily be protonated to the dications [AC(H)(PPh3)2]2+. The calculations of the dications indicate that the molecules are best represented as complexes L→(CHA)2+←L (L=PPh3) where a carbene dication is stabilized by the ligands. The central carbon atom in the cations and even in the dications carries a negative partial charge, which is larger than the negative charge at fluorine. There is also the peculiar situation in which the carbon–fluorine bonds in [FC(PPh3)2]+ and [FC(H)(PPh3)2]2+ exhibit the expected polarity with the negative end at fluorine, but the carbon atom has a larger negative charge than fluorine. Given the similarity of carbodiphosphorane C(PPh3)2 and carbodicarbene C(NHC)2, we expect that analogous compounds [AC(NHC)2]+ and [AC(H)(NHC)2]2+ with similar features as [AC(PPh3)2]+ and [AC(H)(PPh3)2]2+ can be isolated.  相似文献   

19.
We present the synthesis and characterization of the inter-metalloid clusters R3PAuGe9(Hyp)3Pt(PPh3) [R = Et, Bu; Hyp = Si(SiMe3)3] obtained by the reaction of R3PAuGe9(Hyp)3 (R = Et, Bu) with Pt(PPh3)4. The realized cluster enlargement is also known for the neutral cluster Ge9(Et)(Hyp)3, leading, however, to a different arrangement of substituents and different dynamics in the solution.  相似文献   

20.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号