首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a thorough derivation of the mathematical foundations of the representation of the molecular linear electronic density-density response function in terms of a computationally highly efficient moment expansion. Our new representation avoids the necessities of computing and storing numerous eigenfunctions of the response kernel by means of a considerable dimensionality reduction about from 103 to 101. As the scheme is applicable to any compact, self-adjoint, and positive definite linear operator, we present a general formulation, which can be transferred to other applications with little effort. We also present an explicit application, which illustrates the actual procedure for applying the moment expansion of the linear density-density response function to a water molecule that is subject to a varying external perturbation potential. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   

2.
We present a low rank moment expansion of the linear density‐density response function. The general interacting (fully nonlocal) density‐density response function is calculated by means of its spectral decomposition via an iterative Lanczos diagonalization technique within linear density functional perturbation theory. We derive a unitary transformation in the space of the eigenfunctions yielding subspaces with well‐defined moments. This transformation generates the irreducible representations of the density‐density response function with respect to rotations within SO(3). This allows to separate the contributions to the electronic response density from different multipole moments of the perturbation. Our representation maximally condenses the physically relevant information of the density‐density response function required for intermolecular interactions, yielding a considerable reduction in dimensionality. We illustrate the performance and accuracy of our scheme by computing the electronic response density of a water molecule to a complex interaction potential. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We use large-scale classical simulations employing different force fields to study spatial correlations between local density and structural order for water in the liquid temperature range. All force fields investigated reproduce the main features of the experimental SAXS structure factor S(q), including the minimum at small q, and the recent TIP4P/2005 parametrization yields almost quantitative agreement. As local structural order parameters we consider the tetrahedrality and the number of hydrogen bonds and calculate all pure and mixed spatial two-point correlation functions. Except for the density-density correlation function, there are only weak features present in all other correlation functions, showing that the tendency to form structural clusters is much weaker than the well-known tendency of water to form density clusters (i.e., spatially correlated regions where the density deviates from the mean). In particular, there are only small spatial correlations between local density and structural fluctuations, suggesting that features in density-density correlations (such as measured by the structure factor) are not straightforwardly related to spatial correlations of structure in liquid water.  相似文献   

4.
We show that, apart from a few differences, the equations-of-motion method of McKoy et al. provides the leading correction to the random phase approximation (with exchange) in the fully renormalized response function (density-density correlation function). Thus, their equations-of-motion method is shown to be equivalent to a partial summation of infinite sets of terms in the perturbation expansion of the response function.  相似文献   

5.
It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density-density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge.On leave of absence from Depto. de Física e Química, UFES, 29000 Vitória, ES, Brasil  相似文献   

6.
Density functional theory (DFT) results are mistrusted at times due to the presence of an unknown exchange correlation functional, with no practical way to guarantee convergence to the right answer. The use of a known exchange correlation functional based on wave-function theory helps to alleviate such mistrust. The exchange correlation functionals can be written exactly in terms of the density-density response function using the adiabatic-connection and fluctuation-dissipation framework. The random phase approximation (RPA) is the simplest approximation for the density-density response function. Since the correlation functional obtained from RPA is equivalent to the direct ring coupled cluster doubles (ring-CCD) correlation functional, meaning only Coulomb interactions are included, one can bracket RPA between many body perturbation theory (MBPT)-2 and CCD with the latter having all ring, ladder, and exchange contributions. Using an optimized effective potential strategy, we obtain correlation potentials corresponding to MBPT-2, RPA (ring-CCD), linear-CCD, and CCD. Using the suitable choice of the unperturbed Hamiltonian, Kohn-Sham self-consistent calculations are performed. The spatial behavior of the resulting potentials, total energies, and the HOMO eigenvalues are compared with the exact values for spherical atoms. Further, we demonstrate that the self-consistent eigenvalues obtained from these consistent potentials used in ab initio dft approximate all principal ionization potentials as demanded by ionization potential theorem.  相似文献   

7.
Abstract

It is shown that the expression for the Fourier components of the density-density correlation function in a fluid obtained from the linearized hydrodynamic equations can also be obtained by adopting a particularly simple form for the associated memory function. The result is used to calculate the longitudinal viscosity of a fluid in terms of the moments of the space and time Fourier transform of the density-density correlation function S(q, ω).  相似文献   

8.
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank et al. [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT.  相似文献   

9.
We present ab initio calculations of frequency-dependent linear and nonlinear optical responses based on real-time time-dependent density functional theory for arbitrary photonic molecules. This approach is based on an extension of an approach previously implemented for a linear response using the electronic structure program SIESTA. Instead of calculating excited quantum states, which can be a bottleneck in frequency-space calculations, the response of large molecular systems to time-varying electric fields is calculated in real time. This method is based on the finite field approach generalized to the dynamic case. To speed the nonlinear calculations, our approach uses Gaussian enveloped quasimonochromatic external fields. We thereby obtain the frequency-dependent second harmonic generation beta(-2omega;omega,omega), the dc nonlinear rectification beta(0;-omega,omega), and the electro-optic effect beta(-omega;omega,0). The method is applied to nanoscale photonic nonlinear optical molecules, including p-nitroaniline and the FTC chromophore, i.e., 2-[3-Cyano-4-(2-{5-[2-(4-diethylamino-phenyl)-vinyl]-thiophen-2-yl}-vinyl)-5,5-dimethyl-5H-furan-2-ylidene]-malononitrile, and yields results in good agreement with experiment.  相似文献   

10.
We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of the generalized dynamical functions fK(q,q',q,q') of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.  相似文献   

11.
Many useful concepts developed within density functional theory provide much insight for the understanding and prediction of chemical reactivity, one of the main aims in the field of conceptual density functional theory. While approximate evaluations of such concepts exist, the analytical and efficient evaluation is, however, challenging, because such concepts are usually expressed in terms of functional derivatives with respect to the electron density, or partial derivatives with respect to the number of electrons, complicating the connection to the computational variables of the Kohn-Sham one-electron orbitals. Only recently, the analytical expressions for the chemical potential, one of the key concepts, have been derived by Cohen, Mori-Sánchez, and Yang, based on the potential functional theory formalism. In the present work, we obtain the analytical expressions for the real-space linear response function using the coupled perturbed Kohn-Sham and generalized Kohn-Sham equations, and the Fukui functions using the previous analytical expressions for chemical potentials of Cohen, Mori-Sánchez, and Yang. The analytical expressions are exact within the given exchange-correlation functional. They are applicable to all commonly used approximate functionals, such as local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals. The analytical expressions obtained here for Fukui function and linear response functions, along with that for the chemical potential by Cohen, Mori-Sánchez, and Yang, provide the rigorous and efficient evaluation of the key quantities in conceptual density functional theory within the computational framework of the Kohn-Sham and generalized Kohn-Sham approaches. Furthermore, the obtained analytical expressions for Fukui functions, in conjunction with the linearity condition of the ground state energy as a function of the fractional charges, also lead to new local conditions on the exact functionals, expressed in terms of the second-order functional derivatives. We implemented the expressions and demonstrate the efficacy with some atomic and molecular calculations, highlighting the importance of relaxation effects.  相似文献   

12.
The formulation of density-functional expansion methods is extended to treat the second and higher-order terms involving the response density and spin densities with an arbitrary single-center auxiliary basis. The two-center atomic orbital products are represented by the auxiliary functions centered about those two atoms, and the mapping coefficients are determined from a local constrained variational procedure. This two-center variational procedure allows the mapping coefficients to be pretabulated and splined as a function of internuclear separation for efficient look up. The splines of mapping coefficients have a range no longer than that of the overlap integrals, and the auxiliary density appears as a single point-multipole expansion to all nonoverlapping atoms, thus allowing for the trivial implementation of a linear-scaling algorithm. The method is tested using Gaussian multipole expansions, and the effect of angular and radial completeness is explored. Several auxiliary basis sets are parametrized and compared to an auxiliary basis analogous to that used in the self-consistent-charge density-functional tight-binding model, and the method is demonstrated to greatly improve the representation of the density response with respect to a reference expansion model that does not use an auxiliary basis.  相似文献   

13.
Linear scaling density matrix perturbation theory [A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is extended to basis-set-dependent quantum response calculations for a nonorthogonal basis set representation. The generalization is achieved by a perturbation-dependent congruence transform, derived from the factorization of the inverse overlap matrix, which transforms the generalized eigenvalue problem to an orthogonal, standard form. With this orthogonalization transform the basis-set-dependent perturbation in the overlap matrix is included in the orthogonalized Hamiltonian, which is expanded in orders of the perturbation. In this way density matrix perturbation theory developed for an orthogonal representation can be applied also to basis-set-dependent response calculations. The method offers an alternative to the previous solution of the basis-set-dependent response problem, based on a nonorthogonal generalization of the density matrix perturbation theory, where the calculations are performed within a purely nonorthogonal setting [A. M. N. Niklasson et al., J. Chem. Phys. 123, 44107 (2005)].  相似文献   

14.
Macroscopic behavior of a system of brownian particles interacting with each other through potential forces is described by a generalized diffusion equation (GDE) for the density of particles. The diffusion coefficient in the GDE is given by the generalized Stokes—Einstein relation and generally depends on the density. In the presence of long-range interactions, the GDE becomes non-local in space. When a Coulomb interaction exists, the GDE corresponds to an improvement of the Poisson—Boltzmann equation.  相似文献   

15.
Abstract

The self-motion response function and incoherent scattering function Ss(k, ω) for simple classical liquids is studied using an exact representation presented in a previous paper. The latter can be termed a generalized mean field representation to distinguish it from the generalized hydrodynamic representation introduced elsewhere. It is shown that the present formalism offers a natural and convenient way of relating the experimentally determined Ss(k, ω) to some basic quantities involving only the interaction. Using a small part of the recent experimental data on incoherent neutron scattering in liquid argon, we are able to calculate Ss(k, ω) and other quantities of interest and to compare with the rest of the data  相似文献   

16.
A weakly nonlinear approach is utilized here to discuss surface wave instability for two superposed electrified fluids of Kelvin type. The influence of a vertical electric field is discussed. The linear form for equations of motion is solved in the light of nonlinear boundary conditions. The method of multiple scales is used for the purpose of nonlinear perturbation. The surface wave response is governed by the well-known nonlinear Ginzburg-Landau equation rather than the transcendental dispersion relation in the linear scope. Although linear stability conditions are not available for arbitrary viscosity, the nonlinear analysis allowed deriving necessary and sufficient stability conditions. Moreover, at the marginal state, the nonlinear scope for stability is discussed through its dependence on the wavetrain frequency, in which short-wave disturbance is assumed to relax the linear transcendental terms. Besides the linear stability constraint, the nonlinear scope gives an additional constraint on the wavetrain frequency. Nonlinear stability criteria are derived and are performed in view of a nondimensional form. Furthermore, the nonlinear analysis is repeated for an arbitrary wave disturbance. A suitable choice for dimensionless form made it possible to relax transcendental terms included in stability conditions. Numerical calculations at the marginal state show that both the vertical electric field and the stratified fluid density play a dual role in the stability criteria. This dual role is the opposite to the dual role that the stratified viscosity plays in the stability profile. For the marginal state representation, numerical examination shows that elasticity plays a dual role in the stability criteria in a manner similar to that of the viscosity behavior.  相似文献   

17.
The Green's function for the master equation and the generalized master equation in path representation is an infinite sum over the length of path probability density functions (PDFs). In this paper, the properties of path PDFs are studied both qualitatively and quantitatively. The results are used in building efficient approximations for Green's function in 1D, and are relevant in modeling and in data analysis.  相似文献   

18.
A phenomenological study of deformed rubber in uniaxial tension, pure shear and equi-biaxial tension, leads to a generalized strain energy density representation for hyperelastic elastomeric material behaviour. A strain energy density function family is built with a new process. It is particularly well adapted for representing experimental data of different types of loading, and so, for a wide class of elastomers. Besides, parameter identification of this family of strain energy density functions is simple and fast.  相似文献   

19.
The full perturbation expansion for the response (or density—density correlation) function is examined in order to provide a useful general theory of excitation energies, oscillator strengths, dynamic polarizabilities, etc., that is more accurate than the random phase approximation. It is first shown how the formal partition of the diagrammatic version of the perturbation expansion into reducible and irreducible diagrams is generally useless as the latter category contains all the difficult terms which have heretofore resisted analysis in all but a haphazard form. It is then shown how the diagram for the response function can be partitioned into “correlated” and “uncorrelated” subsets. Restricting attention to the particle—hole blocks of the full response function, the “uncorrelated” diagrams desecribe the propagation of a particle—hole pair in an N-electron system where the particle and hole are each interacting with the remaining electrons but they are not interacting with each other. The “correlated” diagrams are those containing the hole—particle interactions, and, by defining a new class of reducible and irreducible diagrams, these are all summed to provide a perturbation expansion of the effective two-body hole—particle interaction that appears in the inverse of the response function. The “uncorrelated” diagrams are further partitioned into two sets, one of which is summed to all orders, while the other set is inverted in an order by order fashion. The final result presents a perturbation expansion for the inverse of the response function that is analogous to the Dyson equation for one-electron Green functions. Maintaining the perturbation expansion through first order for the inverse of the response function yields the eigenvalue equation of the familiar random phase approximation, while truncation at second order provides the most advanced theories that have been generated by the equations-of-motion method.  相似文献   

20.
The two-particle spatial density matrix components introduced by McWeeny are expressed in terms of the Fock coordinate wave function, which is constructed from an arbitrary function of N spatial coordinates. The integral relations for these components are verified. The necessary matrix elements of a standard representation of the SN group are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号