首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

2.
Crystals of four amine‐templated layered uranyl selenates, [C2H10N2][(UO2)(SeO4)2(H2O)](H2O) ( 1 ), [CH6N3]2[(UO2)(SeO4)2(H2O)](H2O)1.5 ( 2 ), [C4H12N]2[(UO2)(SeO4)2(H2O)] ( 3 ), and [CH6N3]3[(UO2)2(SeO4)2(H(SeO4)2)](H2O)2 ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The structures of all four compounds have been solved by direct methods. The structures of 1 (monoclinic, C2/c, a = 11.787(2), b = 7.7007(10), c = 16.600(3) Å, β = 102.016(14)°, V = 1473.7(4) Å3, R1 = 0.037 for 1743 unique observed reflections), 2 (monoclinic, C2/c, a = 37.314(4), b = 7.1771(6), c = 13.2054(14) Å, β = 109.267(8)°, V = 3338.4(6) Å3, R1 = 0.088 for 3005 unique observed reflections) and 3 (monoclinic, C2/c, a = 27.212(10), b = 7.372(3), c = 23.113(7) Å, β = 117.75(2)°, V = 4103(3) Å3, R1 = 0.073 for 2111 unique observed reflections) are based on sheets of the composition [(UO2)(SeO4)2(H2O)]2? consisting of pentagonal [UO7]8? pentagonal bipyramids linked via [SeO4]2? tetrahedra. The sheets have the same chemical composition but different topologies. The structure of 4 (orthorhombic, P212121, a = 10.7261(9), b = 13.918(2), c = 18.321(2) Å, V = 2735.1(5) Å3, R1 = 0.050 for 5683 unique observed reflections) contains [(UO2)2(SeO4)2(H(SeO4)2)]3? sheets parallel to (001). In all four structures, the layers are connected via protonated amine and H2O molecules.  相似文献   

3.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

4.
Abstract

Two new uranyl coordination compounds, [C9H17N2]3[(UO2)2(CrO4)2Cl2(H2O)2]Cl·5H2O (1) and (C9H17N2)[(UO2)(C2O4)Cl] (2), have been synthesized by adding potassium dichromate (K2Cr2O7) or oxalic acid dihydrate (H2C2O4·2H2O) solution into an aqueous solution of uranyl nitrate and 1-butyl-2,3-dimethylimidazolium chloride [Bmmim]Cl. [Bmmim]Cl provides the charge balance and Cl ions that coordinate with uranyl ions. The fundamental building units of 1 and 2 are UO6Cl pentagonal bipyramidal structures. Compound 1 exhibits a graphene-like structure with a system molar ratio of 1:1 for U:Cr and crystallizes in the orthorhombic space group Pbca, with a = 25.644(3) Å, b = 12.996(14) Å and c = 29.198(4) Å. 16-Membered rings are formed by CrO42? and UO22+ in the crystal structure of 1. Compound 2 crystallizes in monoclinic space group P21/n, with a = 10.759(3) Å, b = 11.395(3) Å, c = 14.149(4) Å, β = 102.962(9)° and shows one-dimensional (1D) serrated chains. Within the crystal structures of 1 and 2, C–H[Bmmim]Cl?O hydrogen bonds are identified. O–Hwater?Cl hydrogen bonds are also detected in the crystal structure for 1.  相似文献   

5.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

6.
Two novel isopropylamine‐templated uranyl chromates, [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] ( 1 ) and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)] ( 2 ) were prepared by hydrothermal method at 100 °C. The compounds were characterized by electron microprobe analysis and X‐ray diffraction crystal structure analysis [ 1 : trigonal, P31m, a = 9.646(4), c = 8.469(4) Å, V = 682.4(5) Å3; 2 : monoclinic, P21/c, a = 11.309(3), b = 11.465(3), c = 17.055(5) Å, β = 99.150(6)°, V = 2183.2(11) Å3]. The structure of 1 is based upon trimers of uranyl bipyramids interlinked by CrO4 tetrahedra to form [(UO2)3(CrO4)2O(OH)3]3– layers, whereas, in the structure of 2 , UO7 and UO6(H2O) pentagonal bipyramids are linked through CrO4 tetrahedra into the [(UO2)2(CrO4)3(H2O)]2– layers. The structures show many similarities to related uranyl selenate compounds, thus providing additional data on similarities and differences between uranyl sulfates, chromates, selenates, and molybdates.  相似文献   

7.
Concentrated aqueous solutions of strontium chloride and barium chloride, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4·H2O, the isolation of the earth alkaline salts SrC4S4·4 H2O ( 1 ) and Ba4K2(C4S4)5·16 H2O ( 2 ), both as dark red crystals. The crystal structure determinations ( 1 : orthorhombic, Pnma, a = 8.149(1), b = 12.907(2), c = 10.790(2) Å, Z = 4; 2 : orthorhombic, Pbca, a = 15.875(3), b = 21.325(5), c = 16.119(1) Å, Z = 4) show the presence of C4S42− ions with only slightly distorted D4h symmetry having average C–C and C–S bond lengths of 1.41Å and 1.681Å for 1 and 1.450Å and 1.657Å for 2 . The structure of 1 contains concatenated edge‐sharing Sr(H2O)6S2 polyhedra. The Sr2+ ions are in eight‐fold coordination with Sr–O distances of 2.50–2.72Å and Sr–S distances of 3.21Å, (C4S4)2− acts as a chelating ligand towards Sr2+. The structure is closely related to the previously reported Ca2+ containing analogue, which is of lower symmetry belonging to the monoclinic crystal system. A supergroup‐subgroup relation between the space groups of both structures is present. The structure of 2 is made up of Ba2+ and K+ ions in eight and nine‐fold coordination by H2O molecules and (C4S4)2− ions which act as chelating ligands towards one cation and bridging between two cations. The coordination polyhedra of the cations are connected by common edges and corners in two dimensions to layers which are connected by tetrathiosquarate ions to a three‐dimensional network. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

8.
Yellowish crystals of K2[(UO2)As2O7] ( 1 ) have been synthesized by solid‐state reactions method. The structure of 1 [orthorhombic, Pmmn, a = 12.601(2), b = 13.242(2), c = 5.621(1) Å, V = 937.9(3) Å3, Z = 4] has been solved by direct methods and refined to R1 = 0.049, wR2 = 0.1060 for 1059 observed reflections. The structure of 1 is based upon [(UO2)As2O7]2? sheets formed by corner sharing between [UO6]6? distorted octahedra and [As2O7]4? polyarsenate groups. The K+ cations are either in eightfold or tenfold coordination and are located between the sheets. The topology of the uranyl arsenate sheet is related to silicate minerals of the melilite group and related synthetic silicate, aluminate and germanate compounds.  相似文献   

9.
The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two‐dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2‐1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate)}di‐μ3‐sulfato‐diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single‐crystal X‐ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X‐ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.  相似文献   

10.
Decasodium uranyl hexa­sulfate trihydrate, Na10[(UO2)(SO4)4](SO4)2·3H2O, contains an unusual uranyl sulfate cluster with the composition [(UO2)(SO4)4]6?. The cluster is composed of a uranyl pentagonal bipyramid and four sulfate tetrahedra. Three sulfate tetrahedra are linked to the uranyl pentagonal bipyramid by the sharing of vertices, and the other shares an equatorial edge of the uranyl pentagonal bipyramid. The uranyl sulfate clusters occur in layers parallel to (010). The structure also contains two isolated symmetrically distinct sulfate tetrahedra, which also occur in layers parallel to (010). The uranyl sulfate clusters and isolated sulfate tetrahedra are linked through bonds to Na+ cations, and by hydrogen bonding involving the water molecules.  相似文献   

11.
Single crystals of (NH4)2[(UO2)2C2O4(CH3COO)4] · 2H2O have been synthesized and studied. The compound crystallizes in the orthorhombic system with the unit cell parameters a = 6.9225(14) Å, b = 12.327(3) Å, c = 14.619(3) Å, space group Immm, Z = 2, and V = 1247.6(5) Å3. The main structural units of the crystals are the isle binuclear groups [(UO2)2C2O4(CH3COO)4]2? belonging to the crystal-chemical group A2K02B 4 01 (A = UO 2 2+ , K02 = C2O 4 2? , B01 = CH3COO?) of the uranyl complexes. The uranium-containing groups are linked into a three-dimensional framework due to electrostatic interaction with the ammonium cations and through a system of hydrogen bonds involving atoms of the water molecules, oxalate and acetate ions, and ammonium and uranyl cations.  相似文献   

12.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

13.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

14.
The crystal structure of the complexes [Co(DH)2(Tu)2]2[BeF4]·C2H5OH (I) and [Co(DfH)2(Tu)2][BF4] 0.5H2 (II) (where DH? is the dimethylglyoxime monoanion, DfH? is the α-benzyldioxime monoanion, and Tu is thiourea) has been determined by X-ray diffraction analysis. The coordination polyhedron of the Co3+ atom is an N4S2 octahedron formed by four nitrogen atoms of the dioxime molecule and two sulfur atoms of the fragments of thiourea (Tu); the latter have parallel and perpendicular orientations relative to the dioxime residue. The deviation of the cobalt atom from the four-angle plane (formed by the nitrogen atoms of the dimethylglyoxime residues) does not exceed 0.019 Å. The Co-N and Co-S distances vary from 1.877(3) Å to 1.901(3) Å and from 2.280(1) Å to 2.307(1) Å, respectively. The statistically disordered cations [BeF4]2? and [BF4]? play an important role in crystal formation — they form a complex system of hydrogen bonds.  相似文献   

15.
We particularly investigate a new material [Ni(C12H12N2)(H2O)4]SO4 that it was hydrothermally synthesized by reaction of 5,5’‐dimethyl‐2,2’‐bipyridne, denoted (dmbpy), metal salt and sulfuric acid. The large crystals are characterized by X‐ray single crystal diffraction, infrared, Raman spectroscopy and DFT calculation. The thermogravimetric analysis indicated that the dehydration occurs in two steps, leading to an anhydrous compound. At room temperature, the complex crystallises in the centrosymmetric space group P21/c with the following parameters a = 9.492 (7) Å, b = 9.539 (7) Å, c = 18.411 (1) Å, β =102.616 (1)°, V = 1626.8 (2) Å3 and Z = 4. The asymmetric unit contains one free SO42‐counter‐ion and [Ni(dmbpy)(H2O)4]2+ complex cation. The crystal structure of the complex is built up from infinite parallel two‐dimensional planes, containing all the components of the structure and perpendicular to the axis b. The aqua ligands are connected to the sulfate anion via O‐H…O hydrogen bonds that stabilize the three‐dimensional network. The catalytic activity of the complex was examined in the coupling reactions of Heck and Sonogashira in the presence of different bases in various organic solvents under ultrasonic irradiation. The obtained results show that this type of complex can be considered as an effective catalyst for these coupling reactions. The ultrasonic activation results the encouraging yields for a short period of time: 30‐45 min.  相似文献   

16.
A new organic-templated vanadium sulfate with formula [C4H12N2][VIII (OH)(SO4)2] · H2O 1 has been prepared under solvothermal conditions by using a mixture of glycol and water as solvent. The structure of this compound was characterized by IR, element analysis, TG and single crystal X-ray diffraction. The title compound crystallizes in the space group monoclinic, P21/c, a = 9.290(4) Å, b = 18.264(7) Å, c = 7.132(3) Å, β = 98.149(8)°,V = 1197.88 Å3, Z = 4. Structural analysis indicates that the title compound 1 possesses a 1D chain structure formed by VO6 octahedra and SO4 tetrahedra.  相似文献   

17.
The structures of dicyclohexyl-(18-crown-6) uranyl perchlorate, [(C20H36O6)UO2] (ClO4)2 (complex I) and of dicyclohexyl-(18-crown-6) uranyl hydroxyperchlorate [C20H36O6]3 [(UO2)2(H2O)6] · (ClO4)2, CH3CN, (complex II) have been determined from three dimension X-ray diffraction data.The uranyl group is directly coordinated to the oxygen atoms of the polyether ring in complex I; its hydrolysis (complex II) leads to a dimerization of the uranyl ions by sharing two OH groups with an U-U distance of only 3.827(8) Å. The polyether molecules are connected by hydrogen bonds with the dimeric ion [(UO2)2 (OH)2 (H2O)6]2+.  相似文献   

18.
Single crystals of γ‐K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3], that are linked through eleven‐coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α‐ and γ‐phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3] ions separated by K+ cations. The existence of polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two‐dimensional but different three‐dimensional arrangements.  相似文献   

19.
The single-crystal X-ray diffraction analysis of [UO2(SeO4)(C2H4N4)2] · 0.5H2O (I) is performed. The crystals are monoclinic: space group C2/c, Z = 8, a = 19.035(2), b = 7.1326(8), c = 21.477(2) Å, β = 109.683(4)°. The main structural units of the crystal are chains of [UO2(SeO4)(C2H4N4)2]. Compound I belongs to the crystal-chemical group AT3M 2 1 (A = UO 2 2+ , T3 = SeO 4 2? , M1 is a cyanoguanidine molecule) of the uranyl complexes. The chains are united into three-dimensional framework through hydrogen bonds involving the oxygen atoms of the selenate and uranyl groups, the nitrogen atoms of cyanoguanidine, and the hydrogen atoms of the cyanoguanidine or water molecules.  相似文献   

20.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号