首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electronic absorption spectra of ruthenium nitrosyl complexes with nitrogen-containing heterocyclic ligands were analyzed on the basis of ab initio and CINDO/CI semiempirical calculations of free ligands L and complexes trans-[Ru(NO)(NH3)4(L)]3 + (L = pyridine, pyrazine, nicotinamide, isonicotinamide, l-histidine, imidazole). Spectral manifestations of a strong covalent Ru-NO bond were observed to conclude that the oxidation states of Ru and NO in the RuNO3 + group are expedient to represent as Ru(III) and NO0. Introduction of a nitrosyl group into the inner coordination sphere of Ru(II) complexes with nitrogen-containing heterocyclic ligands much affects the entire spectral patterns and denudes these ligands of the capacity to exhibit chromophoric properties.  相似文献   

2.
A series of cis nitrosyl complexes containing polypyridyl ligands were prepared and characterized as cis-[RuL(bpy)2(NO)](PF6)3 (L = pyridine, 4-picoline, or 4-acetylpyridine), by elemental analysis, u.v.–vis. and i.r. spectroscopy, and by electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, spectroelectrochemistry, and coulometry. The complexes exhibit stretching frequencies (NO) at ca. 1950 cm–1 indicating that nitrosyl group has a sufficiently high degree of nitrosonium ion (NO+) character. In non-aqueous solution, the reduction of these complexes induce nitrosyl to nitro conversion. In aqueous solution the reduction product is cis-[RuL(bpy)2(NH3)]2+ formed by a six electron mechanism. The nitrosyl compounds are susceptible to nucleophilic attack by hydroxide ion. The equilibrium constants were determined.  相似文献   

3.
Geometry optimization for the ground state and metastable isomers of the nitrosyl complexes trans-[Ru(NO)(NH3)4(L)]3 + (L = imidazole, pyridine, pyrazine, nicotinamide), [Ru(NO)(CN)5]2 -, and [Ru(NO)Cl5]2 - was performed in terms of the density functional theory (SVWN/LanL2DZ + 6-31G). The energy gap between the stable structure and the isomer with linear coordination of NO via the oxygen atom is practically independent of the nature of ligand L in the series of ammonia complexes with the same charge, and the energy gap between the stable structure and the isomer with side 2 coordination of NO gets slightly smaller if ligand L possesses -acceptor properties.  相似文献   

4.
Compared were dialkylcalix[4]phosphine oxides (L) having PO groups in the opposing rims as regards the extraction of [RuNO(NO2)4(OH)]2−, nonprecious metals (M2+), and Ru/M heterometallic complexes of their base. The extraction constants for the ion association {(Na+)2(LH2O) r [RuNO(NO2)4(OH)]2− and the degree of aggregation of L were calculated. The destruction of (LH2O) r upon metal extraction was verified IR-spectroscopically. The stoichiometry was determined and extraction constants were calculated for mono- and binuclear complexes [M m L n (NO3)2m ] and mononuclear Ru/M species [RuNO(NO2)4(OH)ML n ]. Nonprecious metals form mononuclear ML complexes in the lower rim. The size of the upper rim is responsible for the addition of a second metal nitrate molecule or addition to L or the addition of a second L molecule to the metal. Ru/M complexes with all L are present in an organic phase as two mononuclear species, ML and ML2. Rationale is given to the selection of extraction systems for recovery of ruthenium from nitrated nitric acid solutions selectively or together with actinides and lanthanides in the form of Ru/M complexes.  相似文献   

5.
The state of ruthenium in nitric acid solutions treated with sodium nitrite has been studied by 14N, 15N, 17O, and 99Ru NMR. In the acidity range 2.7-0.12 mol/L, the dominating ruthenium species are the [RuNO(NO2)2(NO3)(H2O)2]0 and [RuNO(NO2)2(H2O)3]+ complexes. When the acidity is decreased to 0.06 mol/L, trinitro-and tetranitronitrosoruthenium(II) complexes predominate in solution. In an acidic medium, the trinitro-and tetranitronitrosoruthenium(II) complexes exhibit catalytic activity toward oxidation with air of nitrite to nitrate.  相似文献   

6.
The reaction of trans-[RuNO(NH3)4(OH)]Cl2 with nitric acid has been studied. Reaction products have been identified by IR spectroscopy, NMR, mass spectrometry, powder and single-crystal X-ray diffraction, and chemical analysis. Synthesis methods have been developed for amminenitrosoruthenium complexes containing outer-sphere and coordinated nitrate ions: trans-[RuNO(NH3)4(H2O)](NO3)3 (I), trans-[RuNO(NH3)4(NO3)](NO3)2 (II), and fac-[RuNO(NH3)2(NO3)3] (III). Complex II has two polymorphs: monoclinic and tetragonal. The latter has been studied by X-ray crystallography.  相似文献   

7.
Synthesis and Properties of (Acido)(nitrosyl)phthalocyaninato(2–)ruthenium (Acido)(nitrosyl)phthalocyaninato(2–)ruthenium, [Ru(X)(NO)pc2–] (X = F, Cl, Br, I, CN, NCO, NCS, NCSe, N3, NO2) is obtained by acidification of a solution of bis(tetra(n-butyl)ammonium) bis(nitro)phthalocyaninato(2–)ruthenate(II) in tetrahydrofurane with the corresponding conc. mineral acid or aqueous ammonium salt solution. The nitrite-nitrosyl conversion is reversal in basic media. The cyclic and differential pulse voltammograms show mainly three quasi-reversible one-electron processes at 1.05, –0.65 and –1.25 V, ascribed to the first ring oxidation and the stepwise reduction to the complexes of type {RuNO}7 and {RuNO}8, respectively. The B < Q < N regions in the electronic absorption spectra are still typical for the pc2– ligand, but are each split into two strong absorptions (14500/16500(B); 28000/30500(Q); 34500/37000 cm–1(N)), whose relative intensities strongly depend on the nature of the axial ligand X. In the IR spectra is active the N–O stretching vibration between 1827 (X = I) and 1856 cm–1 (F), the C–N stretching vibration at 2178 (X = NCO), 2072 (NCS), 2066 (NCSe), 2093 cm–1 (CN), the N–N stretching vibration of the azide ligand at 2045 cm–1, the fundamentals of the nitrito(O) ligand at 1501, 932, and 804 cm–1, and the Ru–X stretching vibration at 483 (F), 332 (Cl), 225 (Br), 183 (I), 395 (N3), 364 (ONO), 403 (CN), 263 (NCS), and 231 cm–1 (NCSe). In the resonance Raman spectra, excited in coincidence with the B region, the Ru–NO stretching vibration and the very intense Ru–N–O deformation vibration are selectively enhanced between 580 and 618 cm–1, and between 556 and 585 cm–1, respectively.  相似文献   

8.
Ruthenium(II) bisbipyridyl complexes cis-[Ru(bpy)2(L)NO2](BF4) (bpy is 2,2'-bipyridyl) with 4-substituted pyridine ligands L = 4-(Y)py (Y = NH2, Me, Ph, and CN) were obtained. The equilibrium constants of the reversible nitro-nitrosyl transition [Ru(bpy)2(L)NO2]+ + 2H+ [Ru(bpy)2(L)NO]3 + + H2O were measured in solutions with pH 1.5-8.5 (ionic strength 0.4). The constants correlate with the protonation constants of free ligands 4-(Y)py.  相似文献   

9.
The structure of the product formed on boiling [RuNO(NH3)3(NO2)(OH)]Cl·0.5H2O in 3 M HNO3 is determined by XRD. The crystals belong to monoclinic symmetry. Crystallographic data for H11ClN6O8Ru are: a = 13.7924(4) ?, b = 6.9114(2) ?, c = 12.3577(4) ?, β = 111.863(1)°, V = 1093.27(6) ?3, Z = 4, d calc = 2.185 g/cm3, space group Cc. The structure is built of complex [RuNO(NH3)3(H2O)Cl]2+ cations and NO3 anions. The compound is studied by IR spectroscopy and X-ray phase analysis. Original Russian Text Copyright ? 2009 by V. A. Emel’yanov, E. V. Kabin, and I. A. Baidina __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 598–601, May–June, 2009.  相似文献   

10.
The complex cis-[Ru(Lpy)NO]3+ (I) (Lpy = N-(2-methylpyridyl)1,4,8,11-tetraazacyclotetradecane) was prepared by the stoichiometric reaction between Ru(dmso)4Cl2 and Lpy and an excess of NaNO2 in ethanolic medium, followed by acidification of the solution. The diamagnetic species was isolated as its hexafluorophosphate salt, and fully characterized by IR (νNO = 1917 cm−1) and diverse NMR techniques in combination with theoretical computations based on the density functional theory (DFT). The compound displays strong electronic transitions below 300 nm and weak ones in the visible region of the spectrum, all of them solvent insensitive. The reaction of cis-[Ru(Lpy)NO]3+ with OH generates the strongly colored nitro compound cis-[Ru(Lpy)NO2]+ (II) The {RuNO}6 compound can be interconverted into the one-electron reduced {RuNO}7 species cis-[Ru(Lpy)NO]2+ (III). The reduction process is completely reversible in the cyclic voltammetry timescale with E0 (versus Ag/AgCl, 3 M Cl) = −0.02 V and 0.18 V in water and acetonitrile, respectively. Controlled potential reduction in both solvents yields to the quantitative formation of III, a process which involves significant changes in the electronic spectroscopy. The {RuNO}7 species proved to be inert against ligand loss, and electrogenerated solutions remained unchanged for several hours if protected from atmospheric oxygen. Electrochemical reoxidation or exposure to air lead to the complete recovery of the starting cis-[Ru(Lpy)NO]3+ material, without signs of secondary reactions. The robustness of the coordination sphere appears as a consequence of the multidentate nature of Lpy.  相似文献   

11.
Geometrical structures of nitroso complexes trans- [Ru(NO)(NH3)4(Cl)]2+, trans-[Ru(NO)(NH3)4(H2O)]3+, [Ru(NO)(Cyclam)(Cl)]2+(Cyclam is 1,4,8,11-tetraazocyclodecane), and [Ru(NO)(Bipy)2(Cl)]2+ (Bipy is 2,2-bipyridine) are optimized using the density functional method. The potential energy surface of all four complexes was found to contain local minima corresponding to a stable state with the 1-coordination of NO through the N atom and to two metastable isomers with the 1-O and 2-NO coordination. For [Ru(NO)Cl5)]2-, trans-[Ru(NO)(NH3)4(Cl)]2+, and trans-[Ru(NO)(NH3)4(H2O)]3+, the lowest electronically excited triplet states are calculated, as well as the reduced complexes with one additional electron. It is shown that the electron excitation and reduction are accompanied by bending of the RuNO group with a substantial elongation of the Ru-O and N-O bonds, which makes this group unstable. These processes do not cause any significant changes in the metal or in the nitroso ligand oxidation states because of the electron density delocalization in the RuNO group.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 32–42.Original Russian Text Copyright © 2005 by Sizova, Lubimova.  相似文献   

12.
The reaction between [RuNO(NH3)2(NO2)2OH] and an excess of 3 M HCl leads to denitration of the starting complex and precipitation of [Ru(NO)(NH3)2Cl3]. Crystals of the tittle complex have been obtained by evaporation of the mother liquor at ambient temperature. The crystal structure of the product has been determined. The linear nitroso group and a water molecule are coordinated in the trans positions, three nitrogen atoms from NO and NH3 ligands occupy the coordination octahedron face.  相似文献   

13.
Electronic spectra of ruthenium(II) nitrosyl complexes [Ru(NO)(salen)(X)]4n (X = Cl, H2O; n = 0, 1) and [Ru(NO)(P)(ONO)] with tetradentate -conjugated ligands N,N'-ethylenebis(salicylideniminato) dianion (salen) and porphinate dianion (P) were calculated by the TD DFT and CINDO/CI methods. The data obtained were compared to the results of previous calculations of the spectra of trans-[Ru(NO)(NH3)4(L)]3 + complexes with nitrogen-containing heterocyclic ligands L. It was found that charge-transfer transitions to * orbitals of the RuNO group dominate in the long-wave part of the spectrum irrespective of the other ligands.  相似文献   

14.
Aqueous solutions of ruthenium nitrosyl chloride complexes have been studied by14N, 15N, 17O, 99Ru, and 35Cl NMR. Individual complex species have been identified and the corresponding chemical shifts have been determined. The primary aquation product of the pentachloronitrosylruthenate ion is the cis-[RuNO(H2O)Cl4]? complex, which subsequently undergoes isomerization. The equilibrium constants of interconversions of ruthenium nitrosyl chloride complexes in an aqueous solution at room temperature have been estimated.  相似文献   

15.
Spectral-kinetic luminescence characteristics of the complexes cis-[Ru(bpy)(dppe)X2], cis- [Ru(bpy)2(PPh3)X](BF4) and cis-[Ru(bpy)2X2] [bpy = 2,2'-bipyridyl, dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 is triphenylphosphine, X = NO2 - and CN-] in the ethanol-methanol 4:1 mixtures and adsorbed on the oxide SiO2 or porous polyacrylonitrile polymer surface were studied. Luminescence and luminescence exitation spectra were registered at 77 and 293 K in 230-750 nm range and the luminescence decay time was measured. Introduction of phosphine ligands to the ruthenium(II) bipyridyl complexes inner sphere leads to rise in singlet and triplet state energy at the charge transfer from Ru(II) to 2,2'-bipyridyl in the series [Ru(bpy)2X2] < Ru(bpy)2(PPh3)X](BF4) < [Ru(bpy)(dppe)X2]. The complex adsorption on SiO2 or polyacrylonitrile surface affects noticeably the luminescence spectro-kinetic characteristics.  相似文献   

16.
The kinetics of base hydrolysis of some (aminomonocarboxylato)(tetraethylenepentamine)cobalt(III) complexes, [(tetren)CoO2CR]2+ (R= NH2CH2, pyridine‐2 ,  NH2CH2CH2,  NH2CH(CH3) (αβS isomer); R= NH2CH(CH3) (αβR isomer)), have been investigated in methanol–water media (0–80 vol % MeOH) at 15.0≤t°C≤40.0 (0.02 mol dm−3 NaOH). The second‐order rate constant at zero ionic strength, k2°, increases nonlinearly with XMeOH. The transfer free energy of the initial state and the transition state of the amido conjugate base ([ΔtG (i)](s←w)) for the glycinato‐ and pyridine‐2–carboxylato complexes have been calculated using the solubility data of their picrate salts, pK NH date of their N‐protonated forms, and the k2° values in mixed solvent media. The kinetic solvent effects have been interpreted in terms of preferential solvation of the initial state, transition state, and the solvent structure. The activation enthalpies and entropies varied nonlinearly with XMeOH displaying extrema, which is attributable to the solvent structural effects on these thermodynamic parameters. It is also evident that the mutation process, αβR→αβS isomer for the α‐alaninato complex, where this isomerisation refers to the arrangement of the tetren skeleton around the planar secondary NH is sensitive to the nature of the cosolvent molecules and solvent structure. The mutation process is generally more favorable for the five coordinate amido conjugate bases than the initial state. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 55–64, 1999  相似文献   

17.
The synergistic extraction of [RuNO(NO2)4OH]2? by diphenyl(dibutylcarbamoylmethyl)phosphine oxide (L) in the presence of nonprecious metal cations (M2+) is studied; the extraction occurs on the account of the formation of heterometal complexes [RuNO(NO2)4OHMLm] (M = Zn, Cu, Co, Ni) due to the addition of M2+ to ruthenium through the oxygen atoms of the OH and NO2 groups and the bidentate coordination of L to M2+. The extraction constants for Ru/M complexes and MLn(NO3)2 are determined. The variation in the extraction constants with changing M (Co, Zn, Cu > Ni) does not agree with the Irwing-Williams row, unlike the extraction with monodentate PO-containing extractants (Zn > Cu > Co > Ni). The feasibility of ruthenium extraction in the form of Ru/M complexes from complex nitrate-nitrite solutions is demonstrated.  相似文献   

18.
The nitrosation of [Ru(NH3)6]2+ in hydrochloric acid and alkaline ammonia media has been studied; the patterns of interconversion of ruthenium complexes in reaction solutions have been proposed. In both cases, nitrogen(II) oxide acts as the nitrosation agent. The procedure for the synthesis of [Ru(NO)(NH3)5]Cl3 · H2O (yield 75–80%), the main nitrosation product of [Ru(NH3)6]2+, has been optimized. Thermolysis of [Ru(NO)(NH3)5]Cl3 · H2O in a helium atmosphere has been studied; the intermediates have been identified. One of these products is polyamidodichloronitrosoruthenium(II) whose subsequent decomposition gives an equimolar mixture of ruthenium metal and dioxide. The structure of trans-[RuNO(NH3)4Cl]Cl2, formed in the second stage of thermolysis and as a by-product in the nitrosation of [Ru(NH3)6]Cl2, has been determined by X-ray diffraction.  相似文献   

19.
A new method for preparing highly stable Pt–Ru/C catalysts at low temperature is reported. Pt–Ru supported on high surface carbon was prepared from Pt(NH3)4Cl2, RuNO(NO3) x (OH) y and borohydride as a reducing agent. Simultaneous reduction of both metals was done by heat treatment and small and homogeneously dispersed catalyst particles were obtained with increased stability, as observed from solubility tests. Catalysis, XRD and TG data gave clear evidence of the different chemical states between the material produced and the commercially available sample. The electrochemical measurements showed that the novel catalysts have a performance similar to that of E-Tek samples.  相似文献   

20.
The solid‐state, low‐temperature linkage isomerism in a series of five square planar group 10 phosphino nitro complexes have been investigated by a combination of photocrystallographic experiments, Raman spectroscopy and computer modelling. The factors influencing the reversible solid‐state interconversion between the nitro and nitrito structural isomers have also been investigated, providing insight into the dynamics of this process. The cis‐[Ni(dcpe)(NO2)2] ( 1 ) and cis‐[Ni(dppe)(NO2)2] ( 2 ) complexes show reversible 100 % interconversion between the η1‐NO2 nitro isomer and the η1‐ONO nitrito form when single‐crystals are irradiated with 400 nm light at 100 K. Variable temperature photocrystallographic studies for these complexes established that the metastable nitrito isomer reverted to the ground‐state nitro isomer at temperatures above 180 K. By comparison, the related trans complex [Ni(PCy3)2(NO2)2] ( 3 ) showed 82 % conversion under the same experimental conditions at 100 K. The level of conversion to the metastable nitrito isomers is further reduced when the nickel centre is replaced by palladium or platinum. Prolonged irradiation of the trans‐[Pd(PCy3)2(NO2)2] ( 4 ) and trans‐[Pt(PCy3)2(NO2)2] ( 5 ) with 400 nm light gives reversible conversions of 44 and 27 %, respectively, consistent with the slower kinetics associated with the heavier members of group 10. The mechanism of the interconversion has been investigated by theoretical calculations based on the model complex [Ni(dmpe)Cl(NO2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号