首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Composites of poly(vinyl chloride) (PVC) filled with micron‐ and nanosized calcium carbonate (CaCO3) particles were prepared by solution blending. The influences of particle size and CaCO3 content on the microstructure and mechanical properties of the PVC composites were investigated by means of polarized optical microscopy and mechanical testing. The polarized optical microscope images revealed that nanosized CaCO3 particles were more agglomerated than micron‐sized CaCO3 particles and the amount of agglomerates increased with increasing particle content. PVC/CaCO3‐0.22 composites (PVC nanocomposite filled with 220‐nm‐particle‐sized CaCO3) 5 phr CaCO3 content had the maximum tensile strength. The Young's modulus of all composites increased with increasing particle content. The energy at break of all composites showed a decreasing trend as a function of CaCO3 content and varied with particle size.  相似文献   

2.
Hydrophobic CaCO3 particles were directly prepared via carbonation of Ca(OH)2 slurry in the presence of sodium oleate at room temperature. Sodium oleate was used to modify the surface property of CaCO3 particles. The measurement of relative contact angle and active ratio indicated that CaCO3 samples were hydrophobic. DTG, FT-IR and TEM analysis of the obtained product indicated that the hydrophobic property was attributed to the deposition of calcium oleate, produced in the reaction mixture, onto the surface of calcium carbonate particles. They were covered on the CaCO3 crystals surface and modified their surface property; at the same time they own CC bonds and could be polymerized or copolymerized later to give a polymeric monolayer.  相似文献   

3.
Poly(vinyl chloride)/calcium carbonate (PVC/CaCO3) composites with micrometer or nanometer CaCO3 as fillers were prepared by the solution blending method. The thermogravimetric analysis (TGA) of the composite films conducted in N2 atmosphere showed that the addition of the CaCO3 fillers could improve their thermal stabilities. It was also found that the nanometer CaCO3 filler provided better thermal stabilities than the micrometer fillers even with a smaller amount. The mechanism of the improvements was investigated by a facile chemical analysis developed to examine the thermal stabilizing effect of calcium carbonate particles with different sizes in PVC/CaCO3 composites after the pyrolysis of the samples in an air atmosphere in an oven.  相似文献   

4.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

5.
本文发展了一种对蛋白质具有吸附/释放功能的二元混合刷涂层(BBC)毛细管,并将其用于蛋白质的在线富集. 通过阳离子开环聚合可逆加成断裂链转移聚合,分别合成了末端为氨基的聚(2-甲基-2噁唑啉)(PMOXA-NH2)以及末端为巯基的聚丙烯酸(PAA-SH). 然后通过聚多巴胺黏合层将PMOXA-NH2和PAA-SH依次接枝到熔融硅毛细管内表面,制备出基于聚(2-甲基-2-噁唑啉)(PMOXA) 和聚丙烯酸(PAA)的BBC毛细管. 利用扫描电镜、X射线光电子能谱分析了在毛细管内表面或毛细管原材料上形成的PMOXA/PAA涂层的厚度及组成. 通过荧光显微镜研究了一定pH及离子强度(I)下,BBC毛细管对蛋白质的吸附/释放功能. 结果表明, pH=5.0 (I=10-5 mol/L)时,BBC毛细管可以吸附牛血清蛋白(BSA),而当pH=9.0 (I=10-1 mol/L)时,吸附的BSA可被释放出来. 将这种具有蛋白质吸附/释放功能的涂层管用于毛细管电泳在线富集BSA,以提高BSA的检测灵敏度. 结果表明,在最佳条件下,BSA的灵敏度增强因子超过了5000.  相似文献   

6.
Herein, a novel heterogeneous nanoscale reducing agent for antibody cleavage, made of iron oxide nanoparticles, silica network, palladium on calcium carbonate (10%), and dithiothreitol (Fe3O4@Pd/CaCO3-DTT), is presented as a substantial alternative for traditional homogeneous analogues. Conventionally, antibody fragmentation is accomplished using reducing agents and proteases that digest or cleave certain portions of the immunoglobulin protein structure to provide active thiol sites for drug tagging aims. Then, dialysis process is needed to separate excess chemical structures and purify the reduced antibody. In this work, we have made an effort to design a suitable heterogeneous tool for protein cleavage and skip the dialysis process for purification of the reduced antibody. In this regard, firstly, various preparation methods including microwave irradiation, reflux and ultrasonication have been precisely compared, and it has been proven that the best result is obtained through 10 min ultrasound (US) irradiation using an US bath with 50 KHz frequency and 200 W L−1 power density. Then, all the necessary structural analyses have been done and thoroughly interpreted for the final product. Afterward, the catalytic performance of Fe3O4@Pd/CaCO3-DTT nanoscale system in the presence of US waves (50 KHz, 200 W) has been monitored using some disulphide derivatives. The NPs could be conveniently separated from the mixture through their substantial paramagnetic property. Thus, dialysis process in which various types of membranes are used is practically jumped after the reduction process. In this work, this is clearly demonstrated that there is a constructive synergistic effect between US waves and prepared Fe3O4@Pd/CaCO3-DTT nanoscale reducing agent. Ultimately, trastuzumab (anti HER-2) antibody has been used to test the performance of the prepared Fe3O4@Pd/CaCO3-DTT NPs in a real protein reduction reaction.  相似文献   

7.

Abstract  

This paper reveals three patterns of bouncing behaviors of suspension drops containing calcium carbonate (CaCO3) powder on a superhydrophobic surface with the aid of a high-speed camera. In transmission electron microscopy (TEM) observation, the particles of CaCO3 are shaped like sticks whose equivalent diameters are about 700 nm. Unlike a pure water drop, dense suspension drops cannot be pinched off at the bounce on the superhydrophobic surface due to a high effective viscosity, whereas the equilibrium contact angle appears to be almost identical in all kinds of droplets.  相似文献   

8.
ABSTRACT

This work investigated the mechanical, physical, morphological, and electrical (volume) resistivity properties of radiation-vulcanized natural rubber latex (RVNRL) with additions of waste eggshell (WES) powder, which contained primarily CaCO3 (calcite). The results showed that increasing gamma irradiation doses from 0 to 30?kGy in 10-kGy increments led to decreases in the swelling ratio and elongation at break but increases in the crosslink density, tensile modulus at 500% elongation, and tensile strength of the composites. The results also suggested that increasing the WES contents from 0 to 2, 4, or 6 parts per hundred parts of rubber by weight (phr) in the composites improved the tensile modulus at 500% elongation, tensile strength, hardness (Shore A), and electrical (volume) resistivity. In addition, after undergoing thermal aging at 70°C for 96?h, the tensile modulus and hardness (Shore A) increased, while the tensile strength and elongation at break decreased. This work also compared the properties of WES/RVNRL with commercial CaCO3/RVNRL samples at the same 4-phr content. The results indicated that both composites had similar tensile properties, implying possible replacement of commercial CaCO3 with WES powder as an effective reinforcing filler in RVNRL.  相似文献   

9.
Biocompatible hybrid particles composed of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and ferrite (γ-Fe2O3 and Fe3O4) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO3)2, and H3PO4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 °C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe2+ and Fe3+)/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 °C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies.  相似文献   

10.
In order to reinforce the composite consisting of isoprene rubber (IR) and calcium carbonate (CaCO3) particles, the surface treatment of CaCO3 particles with a mixture of amino- and mercapto-functional silane coupling agents was investigated. The quantity of chemisorbed silanes in treated CaCO3 measured using thermogravimetry was greater for amino- than for mercapto-silane and for the tri- than for the dialkoxy structure. Second, the molecular mobility of polycondensate of the mixtures with the trialkoxy structure measured using 1H pulse nuclear magnetic resonance had the least molecular mobility, i.e., formed the highest density network. The greater values of stress at 500% strain, fracture stress, and elongation at break were determined for the treatment with amino- and mercapto-functional silanes having a trialkoxy structure from the stress-strain curves of composite. The mixture treatment with dialkoxy structure and with amino- or mercapto-functional silane only did not improve the mechanical properties sufficiently. Interactions between the amino group and the CaCO3 surface, covalent bonding between the mercapto group and the IR, and high density network formation of trialkoxy silane were important for improving the mechanical properties of the composite.  相似文献   

11.
Calcium carbonate (CaCO3) nanoparticles (9, 15, and 21 nm) were synthesized by solution spray of CaCl2 and NH4HCO3 with sodium lauryl sulfate (SLS) as a stabilizing agent, and their effect was studied on polybutadiene rubber (PBR) with variations in wt% loading (4, 8, and 12%). The results of PBR nanocomposites were compared with commercial CaCO3 (40 μm) and fly ash (75 μm) filled PBR microcomposites. Properties such as tensile strength, young modulus, elongation at break, glass transition temperature, decomposition temperature, and abrasion resistances were determined. Profound effect in properties was observed, because nanometric size of CaCO3 particles synthesized using solution spray technique. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt% of filler loading. This increment in properties was more pronounced in 9-nm size CaCO3. The results were not appreciable above 8 wt% of nanofillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider modeling Young’s modulus of PBR–nano CaCO3 which was predicted by modified Halpin–Tsai equation. It was observed that the predication by the Guth equation and modified Halpin–Tsai equation agreed very well with experimental, whereas the Halpin–Tsai equation can only applied to predict the modulus of rubber nanocomposites in the range of low addition of nanofiller, which agrees the Nielsen equation.  相似文献   

12.
Propylene‐ethylene copolymer/calcium carbonate (CaCO3) composites (weight ratio=50/50) toughened with high density polyethylene (HDPE) were prepared using a twin‐screw extruder; the HDPE content in composites was in the range of 0–4 wt.%. The notched impact strength of propylene‐ethylene copolymer/CaCO3 composites with 1.5 wt.% HDPE was 46% higher than that of propylene‐ethylene copolymer/CaCO3 composites. Differential scanning calorimetry (DSC) experiments showed that good miscibility between propylene‐ethylene copolymer and HDPE enhanced the interpenetration of the macromolecules located in the interface. It was shown that debonding of the small HDPE particles within the propylene‐ethylene copolymer matrix resulted in the formation of small voids; the subsequent plastic deformation of the propylene‐ethylene copolymer matrix next to the voids thinned the ligaments and led to large energy consumption.  相似文献   

13.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

14.
In the present paper, we described a polyacrylic acid (PAA)-assisted microwave irradiation route for synthesis of Calcium carbonate (CaCO3) microcrystals. CaCl2·2H2O and NaHCO3 were used as the starting reactants. Researches showed that the presence of PAA could strongly affect the phase and morphology of CaCO3 crystals. X-ray powder diffraction (XRD) analyses showed that the product prepared from the system with/without PAA corresponded to Vaterite/Calcite, respectively. Scanning electron microscopy (SEM) observations showed that the hierarchical CaCO3 microcrystals were obtained in the presence of PAA. Some factors influencing the morphology of the as-synthesized CaCO3 crystals were systematically investigated.  相似文献   

15.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

16.
Hydrophobic vaterite nanoparticles were prepared via crystallization of CaCO3 with oleic acid in methanol by mimicking the process of biomineralization. The molar ratio of oleic acid to calcium ion was varied from 0.1 to 0.5. By changing the concentration of the oleic acid, CaCO3 particles with different shapes and polymorphism were obtained. High concentration of the oleic acid gave stable vaterite crystals, the polymorph of which did not change when the composite was kept in water for more than one week. Fourier transform infrared spectroscopy (FT-IR) and TGA analysis of the obtained product indicated that the oleic acid was bound to the crystalline CaCO3. The contact angle of the modified vaterite reached 122°. We have succeeded in crystallization of hydrophobic CaCO3 nanoparticles in situ.  相似文献   

17.
Nano-sized calcium carbonate (CaCO3) particles were modified by heptadecafluorodecyl trimethoxysilane under acidic water condition. An ordinary polyacrylate prepared via radical copolymerization of methyl methacrylate, butyl acrylate, acrylic acid and β-hydroxyethyl methacrylate was used as the binder to form hydrophobic coatings with the modified CaCO3. Super hydrophobic coating with water contact angle of 155° was obtained from modified CaCO3 and the polyacrylate at their weight ratio of 8/2 by a simple procedure. Based on surface analysis by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), the super hydrophobicity can be attributed to both the surface microstructure and surface enrichment of fluoroalkyl chains. Due to a low water sliding angle, carbon black powder on super hydrophobic surface was easily removed by rolling water droplet. Furthermore, the anti-frosting performance of different surfaces was investigated, which indicated that the frost formed on superhydrophobic surface was greatly retarded compared with that on bare copper surface. The surface kept super hydrophobicity even after freezing-thawing treatment for 10 times.  相似文献   

18.
Nanoparticle technology is being increasingly used in environmental sciences. We prepared single enzyme nanoparticle (SEN) by modifying the surface of carbonic anhydrase (CA) with a thin layer of organic/inorganic hybrid polymer. SEN-CA appears to be improving the stability of free enzyme. CA, as ubiquitously found enzyme, is involved in gaseous CO2 sequestration and is being looked as a promising candidate for combating global warming. We report here physical characterization of SEN-CA using transmission electron microscope (TEM), Fourier-transform infrared analysis (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray (EDX). Average size of SEN-CA particles appears to be in the range of 70–80 nm. We also report the effect of SEN formation on the kinetic parameters of free CA such as Michaelis–Menten constant (K m), maximum reaction velocity (V max), and storage stability of free CA and SEN-CA. The V max of SEN-CA (0.02857 mmol/min/mg) and free enzyme (0.02029 mmol/min/mg) is almost similar. K m has decreased from 6.143 mM for SEN-CA to 1.252 mM for free CA. The stabilization of CA by SEN formation results in improved the half-life period (up to 100 days). The formation of carbonate was substantiated by using gas chromatography (GC). The conversion of CO2 to carbonate was 61 mg of CaCO3/mg of CA and 20.8 mg of CaCO3/mg of CA using SEN-CA and free CA, respectively.  相似文献   

19.
朱剑云  刘璐  李育强  徐静平* 《物理学报》2013,62(3):38501-038501
采用反应溅射法, 分别制备以LaTiON, HfLaON为存储层的 金属-氧化物-氮化物-氧化物-硅 电容存储器, 研究了淀积后退火气氛(N2, NH3)对其存储性能的影响. 分析测试表明, 退火前LaTiON样品比HfLaON 样品具有更好的电荷保持特性, 但后者具有更大的存储窗口 (编程/擦除电压为+/-12 V时4.8 V); 对于退火样品, 由于NH3的氮化作用, NH3退火样品比N2退火样品表现出更快的编程/擦除速度、更好的电荷保持特性和疲劳特性. 当编程/擦除电压为+/-12 V时, NH3退火HfLaON样品的存储窗口为3.8 V, 且比NH3退火LaTiON样品具有更好的电荷保持特性和疲劳特性.  相似文献   

20.
Infrared and Raman spectra of CO[dbnd] 3 ions are different in the two crystallographic forms of CaCO3 Calcite and Aragonite owing to their different site symmetries. Due to this fact, i.r. has been used to assess the reversible Calcite ← → Aragonite transformation which occurs upon grinding of CaCO3, and much work has been done in this field in the last few years(1-4). In the present paper data are reported on Raman spectra of Calcite and Aragonite forms of CaCO3 produced by the above mechanical procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号