首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular mass spectrometry (MS) analysis of protein phosphorylation is partially limited by the molecular specie specificity of the analytical responses that might impair both qualitative and quantitative performances. Elemental MS, such as inductively coupled plasma mass spectrometry (ICP-MS) can overcome these drawbacks; in fact, analytical performance is theoretically independent of the molecular structure of a target analyte naturally containing the elements of interest. Nevertheless, isobaric interferences derived from sample matrix and laboratory environment can hinder the quantitative determination of both phosphorus (P) and sulfur (S) as 31P+ and 32S+ by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) under standard plasma conditions. These interferences may be overcome by quantifying P and S as oxide ions 31P16O+ and 32S16O+, respectively.In this study, we present a systematic investigation on the effect of plasma instrumental conditions on the oxide ion responses by a design of experiment approach for the simultaneous ICP-QMS determination of P and S (31P16O+ and 32S16O+, respectively) in protein samples without the use of dynamic reaction, collision reaction cells or pre-addition of oxygen as reactant gas in the torch. The proposed method was evaluated in terms of limit of detection, limit of quantification, linearity, repeatability, and trueness. Moreover, detection and quantification capabilities of the optimized method were compared to the standard plasma mode for determination of 31P+ and 34S+. Spectral and non-spectral interferences affecting the quantification of 31P+, 31P16O+ and 32S16O+ were also studied. The suitability of inorganic elemental standards for P and S quantification in proteins was assessed. The method was applied to quantify the phosphorylation stoichiometry of commercially available caseins (bovine β-casein, native and dephosphorylated α-casein) and results were confirmed by Matrix Assisted Laser Desorption Ionization Time of Flight MS analysis.We demonstrate that ICP-QMS, by quantifying P and S as oxide ions, was able to accurately calculate the degree of phosphorylation of β-casein and α-casein and to detect specific partial enzymatic dephosphorylation. The collected results might lead to further development of ICP-QMS interfaces optimized for protein phosphorylation studies and for proteomics investigations.  相似文献   

2.
A new method for quantification of spectral interferences based on analyte isotope ratio measurements in the presence of various concentrations of a specific matrix is presented. Within the method, a tolerance level is used, defined as the matrix concentration at which the ratio between analyte isotopes with and without interferences is altered by 10% compared to a pure water reference standard, normalized with respect to the analyte concentration in the solutions. This can be used to estimate the lowest analyte concentration which can be determined with a defined accuracy in the presence of a known concentration of a specific matrix. Regarding spectroscopic interference effects, comparative results for sample introduction into the ICP–MS by electrothermal vaporization, ETV, and nebulization are presented for common matrix — (Ca, Na, K, Cl, P, O) and analyte (Cr, Ni, Cu, As, Se) elements. With the exception of the spectral overlap of 31P2+ on 62Ni+, spectroscopic interferences were reduced by 1–2.5 orders of magnitude when using ETV for sample introduction. Reasons for the increase in the spectral interference of 31P2+ on 62Ni+ are discussed. For sample introduction by nebulization, it was found that spectral interferences from CaO+ on 58Ni+ and 60Ni+ were reduced in the presence of phosphate.  相似文献   

3.
It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, time‐of‐flight secondary ion mass spectrometry, nanoscale secondary ion mass spectrometry, and atom probe tomography (APT) were used to image the distribution of Li and B in two representative glass samples, and their performance was comprehensively compared. APT can provide three‐dimensional Li and B imaging with very high spatial resolution (≤2 nm). In addition, absolute quantification of Li and B is possible, although there remains room for improving accuracy. However, the major drawbacks of APT include poor sample compatibility and limited field of view (normally ≤100 × 100 × 500 nm3). Comparatively, time‐of‐flight secondary ion mass spectrometry and nanoscale secondary ion mass spectrometry are sample‐friendly with flexible field of view (up to 500 × 500 µm2 and image stitching is feasible); however, lateral resolution is limited to only about 100 nm. Therefore, secondary ion mass spectrometry and APT can be regarded as complementary techniques for nanoscale imaging of Li and B in glass and other novel materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Oleanane‐type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid‐resolution liquid chromatography with time‐of‐flight mass spectrometry (RRLC/TOF‐MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H]+ or/and [M + Na]+ was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH2O (30 Da), 2 × H2O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H–H2O]+ (named [B]+), corresponding to the presence of a C22‐acetyl group, C24‐hydroxyl group, C22‐hydroxyl group or C30‐carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A‐ and B‐rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
An inductively coupled plasma quadrupole mass spectrometer equipped with a dynamic reaction cell™ (DRC) was successfully used for the accurate determination of B, Si, P and S in steel samples, using the reaction of Si+, P+ and S+ ions with O2 in the cell. The method obviated the effect of polyatomic isobaric interferences at m/z 28, 31 and 32 by detecting 28Si+, 31P+ and 32S+ as the oxide ion 28Si16OH, 31P16O and 32S16O at m/z 45, 47 and 48, respectively, which is less interfered. The effects of the operating conditions of DRC system were optimized to get the best signal to noise ratio for 28Si16OH, 31P16O and 32S16O. As there is no spectroscopic interference, boron was determined under the standard mode. Validation of the method was carried out by the determination of B, Si, P and S in steel standard reference materials (NIST SRM 361, 362 and 364). Since the sensitivities of Si, P and S in digested sample solutions and standard solutions were found to be quite different, standard addition method was used for the determination of B, Si, P and S in this study. Good agreement was obtained between the certified values and the experimental results. The precision between sample replicates was better than 6.3% for all the determinations.  相似文献   

6.
A novel kind of salt-resistant superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and attapulgite (APT) was prepared by free-radical aqueous polymerization, using N,N′-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FTIR and XRD. The effects of acidified APT (H+-APT), organo-APT (HDTMABr-APT) and the content of APT in the superabsorbent composite on the water absorbency and the initial swelling rate for the superabsorbent composite in distilled water and in various saline solutions were studied. The effects of incorporated HDTMABr-APT and H+-APT on the reswelling ability of the superabsorbent composites were investigated. The results indicate that the incorporation of APT had remarkable influence on the improvement of water absorbency and swelling rate of the composites. Comparing with the composite doped with H+-APT, the water absorbency for the composite doped with 10 wt% HDTMABr-APT was enhanced from 2140 g g−1 to 2800 g g−1 in distilled water and from 100 g g−1 to 121 g g−1 in 0.9 wt% NaCl solution, respectively. The water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, the reswelling ability of the superabsorbent composites is also improved evidently by adding a small amount of HDTMABr-APT into the composite, comparing with that of incorporated with H+-APT.  相似文献   

7.
It is reported that the physical analysis of poly(3‐methylthophene) (PMeT) thin films were doped with BF anions, which were deposited on tin oxide‐coated glass and stainless steel substrates using electropolymerization technique. The atomistic and electronic structures were evaluated to understand the main principles for the pure and doped PMeT polymers that give the photonic and conductivity properties for this kind of materials. It is found that galvanostatic method is more suitable for the electropolymerization of PMeT on conducting glass or flexible metal surfaces. The films were characterized using SEM, AFM, XRD, FTIR, Raman, and UV–vis absorption techniques. Raman and FTIR spectra of the samples revealed no signal related to the Li or the anion BF dopant, indicating that the optimum dopant concentration was well below the threshold value. Apart from the dopant influence, which is a well understood phenomenon, an attempt has been made to explain the influence of the lithium in the polymer matrix. The Li+ ions incorporated into the PMeT films form highly confined conjugational defects, neither dynamically nor electronically coupled with the host lattice. Using density function theory calculations, we could determine the optimum geometrical configurations of the cis and trans polymers and their corresponding electronic structure modification because of the presence of Li+ atoms controlling the electronic band gaps. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3058–3068, 2005  相似文献   

8.
Intensity modulated 31P NMR spectra were obtained using the pulse sequence published by Patt and Shoolery. This attached proton test (APT) technique for signal assignment could be applied to systems with long-range heteronuclear couplings in P? O? C? H fragments. In a model system derived from the alcoholysis of P4S10 the six reaction products were assigned to the six signals in the 31P NMR spectrum.  相似文献   

9.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of 39K+, 24Mg+, 55Mn+, 63Cu+, 31P+, 34S+ and 11B+ were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon (13C+) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L−1. The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 μg g−1 for Cu and 14,000 μg g−1 for K.  相似文献   

10.
The ferroelectric, piezoelectric, and dynamic mechanical properties of uniaxially oriented films of poly(vinylidene fluoride) PVF2, undoped and doped with a plasticizer, tricresyl phosphate (TCP), were investigated. X-ray diffraction studies were carried out and show that for uniaxially oriented films, as dopant concentration increased, the percentage of nonpolar α-phase increased. These results also confirmed previous studies that indicate that the dopant resides in the amorphous regions. The piezoelectric coefficients (d31 and e31), pyroelectric coefficient (py), and remanent polarization (Pr) were observed to be enhanced by doping with TCP. Measurements of the pyroelectric coefficient, py, showed that the dopant produced a large increase in py from 19.6 to 28.5 μC/m2/K, suggesting an increase in the thermal expansion coefficient, α3. The data also suggest that a small amount of dopant in the noncrystalline regions greatly enhanced the high-temperature stability of the remanent polarization. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The detection of hydrogen sulfide (H2S) by 2?+?1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2?+?1 REMPI spectrum of H2S near λ?=?302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.  相似文献   

13.
《Mendeleev Communications》2021,31(4):570-571
Isovalent Sn4+ dopant cations do not have a significant effect on the ultraviolet photocatalytic activity of anatase (TiO2) regardless of their location in the bulk or at the surfaces of crystallites. This is due to the formation of no charge balance oxygen vacancies VO acting as (e–,h+) recombination centers towards photogenerated electrons and holes upon doping with Sn4+. Nevertheless, the analysis of a sample containing surfacelocated heterovalent Sb3+ ions (isoelectronic with Sn2+) revealed a significant weakening of the negative effect of VO, which can be accounted for by the presence of a stereochemically active lone pair E of 5s electrons in the nearest vicinity of VO.  相似文献   

14.
Cationic R2P5+ cage compounds ( 1 +) have been synthesized by the stoichiometric reaction of R2PCl, GaCl3 and P4. The reaction conditions depend on the substituent R. Alkyl‐substituted derivatives ( 1 a – 1 d [GaCl4]) are best synthesized under solvent‐free conditions, whereas aryl‐substituted derivatives ( 1 e – 1 h [GaCl4]) are formed in C6H5F. All compounds have been prepared on a multi‐gram scale in good to excellent yields and have been fully characterized with an emphasis on 31P NMR spectroscopy in solution and single‐crystal structure determination. Subsequent chalcogenation reactions of cations R2P5+ ( 1 a +, 1 e +) and trication Ph6P73+ ( 3 3+) with elemental sulfur (α‐S8) or grey selenium (Segrey) yielded a series of unique polyphosphorus–chalcogen cations ( 4 a +, 4 e +, 5 a +, 6 2+ and 7 2+), possessing nortricyclane‐type molecular structures. An in‐depth study of the 31P{1H} and 77Se NMR spectroscopic parameters is presented, and correlations between the substitution pattern and the observed structural features have been investigated in detail.  相似文献   

15.
An understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4. Here we report that the CO2 isotherms at 25–75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g−1). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2, which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2. Such a highly cooperative phenomenon has not been observed for other zeolites.  相似文献   

16.
The extraction of CsNO3 by the highly lipophilic calixarene-crown ether calix[4]arene-bis(t-octylbenzo-crown-6) (CABOBC6) in 1,2-dichloroethane (1,2-DCE) at 25 °C has been shown to be consistent with the formation of both 1 : 1 and 2 : 1 metal : ligand species. Variation of the aqueous-phase CsNO concentration up to 1.0 M and variation of the organic-phase calixarene concentration up to 0.10M was modeled by the program SXLSQI. Formation of the organic-phase species CsBNO3 (B = calixarene) was confirmed as well as the organic-phase dissociation products CsB+ and NO3 -. Good evidence for the 2 : 1 metal : ligand organic-phase species Cs2B(NO3)2 was also found, although the dissociation of nitrate from this complex was not observed. Binding of the second Cs+ cation by the ligand is approximately two orders of magnitude weaker than binding of the first Cs+ cation. The logarithm of the apparent partition ratio (log PB) of the calixarene between water and 1,2-DCE was found by 1H-NMR techniques to be > 5.1.  相似文献   

17.
SIMS depth profiling during O2 + bombardment has been performed to analyse epitaxially grown Si p-n-p layers, which define the p-channel region in vertical Si-p MOS transistors, as well as to establish “on-chip” depth profiling of the functional vertical device. The SIMS detection limit of 31P in Si, phosphorus used as n-type dopant in the transistor, has been optimised as a function of the residual gas pressure in the SIMS analysis chamber and of the sputter erosion rate. We demonstrate that good vacuum during SIMS analysis combined with high erosion rates allows the simultaneous quantitative SIMS depth profiling of n- and p-type dopant concentrations in the vertical transistor. Small area “on-chip” SIMS depth profiling through the layered structure of Al-contact/TiSi2/Si(p-n-p)/Si-substrate has been performed. Factors influencing the depth resolution during “on-chip” analysis of the transistor are discussed especially in terms of sputtering induced ripple formation at the erosion crater bottom, which has been imaged with atomic force microscopy. Received: 15 August 1996 / Revised: 17 January 1997 / Accepted: 21 January 1997  相似文献   

18.
Polyacetylene, (CH)x, has been doped with trimethyloxonium hexachloroantimonate, (CH3)3O+SbCl(1), in dichloromethane and acetonitrile. The maximally doped (CH)x films have moderate conductivities [σRT(CH2Cl2) = 10, σRT(CH3CN) = 0.7 Ω?1 cm?1]. Reactions between 1 and (CH)x CH2Cl2 or CH3CN were followed in situ by 1H nuclear magnetic resonance spectroscopy and x-band electron spin resonance spectroscopy. It was found that the reactions in the two solvents are different. In dichloromethane the dopant is SbCl5, which forms from the decomposition of 1, and doping proceeds by electron removal from (CH)x chains. Based on the ESR signal loss, an estimate can be made of the diffusion rate of SbCl5, into the (CH)x fibrils in CH2Cl2; it is found to be ca. 10?17 cm2/s. In acetonitrile the dopant appears to be either CH3CNCH, H+, CH, or a combination of one or more of these dopants. It is postulated that the CH3CNCH, CH, and/or H+ dopant covalently binds to the (CH)x chain. X-ray photoelectron spectra show that films doped with excess 1 in both solvents have approximately one SbCl per 33 CH units.  相似文献   

19.
Electrostatic solvation free energies were computed for several small neutral bases and their conjugate acids using a continuum solvation model called the self-consistent isodensity polarizable continuum model (SCIPCM). The solvation energies were computed at the restricted Hartree–Fock (RHF) and second-order Møller–Plesset (MP2) levels of theory, as well as with the Becke3–Lee–Yang–Parr (B3LYP) density functional theory, using the standard 6–31G** Gaussian basis set. The RHF solvation energies are similar to those computed at the correlated MP2 and B3LYP theoretical levels. A model for computing protonation enthalpies for neutral bases in fluorosulfonic acid solvent leads to the equation ΔH(B)=−PA(B)+ΔEt(BH+)−ΔEt(B)+β, where PA(B) is the gas phase proton affinity for base B, ΔEt(BH+) is the SCIPCM solvation energy for the conjugate acid, and ΔEt(B) is the solvation energy for the base. A fit to experimental values of ΔH(B) for 10 neutral bases (H2O, MeOH, Me2O, H2S, MeSH, Me2S, NH3, MeNH2, Me2NH, and PH3) gives β=238.4±2.9 kcal/mol when ΔΔEt is computed using the 0.0004 e⋅bohr−3 isodensity surface for defining the solute cavity at the RHF/6–31G** level. The model predicts that for carbon monoxide ΔH(CO)=10 kcal/mol. Thus, protonation of CO is endothermic, and the conjugate acid HCO+ (formyl cation) behaves as a strong acid in fluorosulfonic acid. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 250–257, 1998  相似文献   

20.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Cu and other essential elements (such as K, Mg, Mn, P, S and B) in the leaves of a Cu-tolerant plant Elsholtzia splendens treated with the enriched 65Cu isotope tracer (isotope abundance of 89.2%). The leaves (newly formed, fully grown and oldest) were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of 65Cu+, 39K+, 24Mg+, 55Mn+, 31P+, 34S+ and 11B+ were measured by ICP-QMS to study the accumulation of Cu and other elements of interest. Standard reference material NIST SRM 1515 Apple Leaves doped with known concentrations of analytes (from 0.1 to 2000 mg L−1) was measured together with the samples by LA-ICP-MS and was used for the quantification of the analytical data. Notable accumulation of Cu in the newly formed leaves was clearly identified by imaging LA-ICP-MS. The increased isotope ratios of 65Cu/63Cu measured by LA-ICP-MS demonstrated the path of Cu uptake and accumulation via the petiole and main veins in the leaves. Cu stress-induced accumulation of K, Mg, Mn, P and S in the newly formed leaves was observed, while B was not significantly affected. In the present study, the concentrations of K, Mg, Mn, P and S were not obviously changed in the fully grown leaves after short-term treatment. Along with the treatment, a visible decrease of K and P was found in the oldest leaves, while other elements were not influenced by Cu stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号