首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.

Novel fluoride‐teminated hyperbranched poly(ether ether ketone) with 4‐phenoxyphenyl side group (HPEEK‐F) was prepared from 2‐(4‐phenoxyphenyl)‐1,4‐diphenol (A2) and 1,3,5‐tris[4‐(4‐flourobenzoyl) phenoxy]benzene (B3). An end‐capping approach was used to synthesize tertiary amino‐terminated fluorescent (HPEEK‐DMA) and phenyl ethynyl‐terminated self‐crosslinking poly(ether ether ketone)s (HPEEK‐PEP). These three polymers have the same backbone structure and degree of branching (DB=0.67), and different terminal groups. The nature of the terminal group was shown as the influences of the glass transition temperature (Tg) and decomposition temperature (Td) of polymers. The Tg of HPEEK‐F and HPEEK‐DMA are 30°C lower than HPEEK‐PEP, whereas the Td of HPEEK‐F are 90°C and 50°C higher than HPEEK‐DMA and HPEEK‐PEP, respectively. The HPEEK‐DMA fluoresce blue‐green in solid and in solution. This kind of hyperbranched polymer contains a large amount of terminal chromophore groups which can easily lead to the formation of intramolecular excimers. The fluorescence signal was decreased with increasing acidity, furthermore, the two peaks at 466 nm and 507 nm indicated a blue shift occurred. After curing, the HPEEK‐PEP displayed a Tg at 235.5°C, which is 100°C higher than original polymers. Thermally cured samples show good anti‐chemical corrodibility in DMF, THF, DMAc and NMP solvents.  相似文献   

3.
A convenient and cost‐effective strategy for synthesis of hyperbranched poly(ester‐amide)s from commercially available dicarboxylic acids (A2) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB2‐type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester‐amide)s bearing multi‐hydroxyl end‐groups. The FTIR and 1H NMR spectra indicated that the polymerization proceeded in the proposed way. The DBs of the resulting polymers were confirmed by a combination of inverse‐gated decoupling 13C NMR, and DEPT‐135 NMR techniques. The DBs of the hyperbranched poly(ester‐amide)s were in the range of 0.44–0.73, depending on the structure of the monomers used. The hyperbranched polymers exhibited moderate molecular weights with relatively broad distributions determined by SEC. All the polymers displayed low inherent viscosity (0.11–0.25 dL/g) due to the branched nature. Structural and end‐group effects on the thermal properties of the hyperbranched polymers were investigated using DSC. The thermogravimetric analysis revealed that the resulting polymers exhibit reasonable thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5077–5092, 2008  相似文献   

4.
A series of hyperbranched poly(ester-amide-ether)s (H-PEAEs) were synthesized via the A2+CB3 approach by the self-transesterification of ethyl ester-amide-ethers end-capped with three hydroxyl groups and ethyl ester group at two terminals. The molecular structures were characterized with 1H NMR and FT-IR spectroscopy. The number average molecular weights were estimated by GPC analysis to possess bimodal wide distribution from 1.57 to 2.09. The strong inherent blue fluorescence was observed at 330 nm for excitation and 390 nm for emission. Moreover, the emission intensity and fluorescence quantum yield increased along with the incorporated ether chain length, as well as almost linearly with the H-PEAE concentration in an aqueous solution. For comparing the fluorescence performance, the linear poly(ester-amide-ether) (L-PEAE) and hyperbranched poly(ester-amide) (H-PEA) were synthesized. The results showed that the coexistence of ether bond and carboxyl group in the molecular chain was essential for generating the strong fluorescence. However, the compact backbone of H-PEAE would be propitious to the enhancement of fluorescence properties.  相似文献   

5.
Novel hyperbranched poly(amido amine)s containing tertiary amines in the backbones and acryl as terminal groups were synthesized via the Michael addition polymerizations of trifunctional amines with twofold molar diacrylamide. The hyperbranched structures of these poly(amido amine)s were verified by 13C NMR (INVGATE). The polymerization mechanisms were clarified by following the polymerization process with NMR method, and the results show that the reactivity of secondary amine formed in situ is much lower than that of the secondary amine in 1‐(2‐aminoethyl) piperazine (AEPZ) ring and the primary amine. The secondary amine formed in situ was almost kept out of the reaction before the primary and secondary amines in AEPZ were consumed, leading to the formation of the AB2 intermediate, and the further reaction of the AB2 yielded the hyperbranched polymers. The molecular weights and properties of poly(amindo amine)s obtained were characterized by GPC, DSC, and TGA, respectively. Based on the reaction of active acryl groups in the polymers obtained with glucosamine, hyperbranched polymers containing sugar were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5127–5137, 2005  相似文献   

6.
超支化聚(胺酯)的分子设计及其制备   总被引:21,自引:1,他引:21  
以丙烯酸甲酯和二乙醇胺为原料由Michael加成反应制得N ,N 二羟乙基 3 胺基丙酸甲酯单体 ,再用“准一步法”和“发散法”使之与 1 ,1 ,1 三羟甲基丙烷 (核 )反应合成一种新型超支化聚 (胺 酯 ) .以核磁共振和元素分析方法对N ,N 二羟乙基 3 胺基丙酸甲酯单体的分子结构进行了表征 .GPC测定表明合成的超支化聚 (胺 酯 )分子量分布窄 ,具有单分散性 ;粘度小于同分子量的线形分子 ;耐热性能较好 ,失重温度高于2 0 0℃ .  相似文献   

7.
朱新远 《高分子科学》2015,33(5):680-687
It is found that the fluorescence of aliphatic poly(amido amine)s including linear and hyperbranched ones can be dramatically enhanced by simple aggregation of polymer chains, attributing to the formation of a variety of intra- and interchain clusters with shared lone-pair electrons and the restriction of intramolecular motions. Thanks to the combination of strong solid fluorescence and excellent biocompatibility, these non-conjugated polymers become promising candidates for bioimaging such as bacterial detection. This finding not only extends the aggregation-induced emission(AIE) systems from conjugated compounds to non-conjugated materials, which expands the bioapplication range of AIE systems, but also sheds light on the exploration of novel unconventional luminogens.  相似文献   

8.
Novel hyperbranched poly(amido amine)s containing tertiary amines on the backbones and acryl or secondary amines as the surface groups were successfully synthesized via the Michael addition polymerizations of a triacrylamide [1,3,5‐triacryloylhexahydro‐1,3,5‐triazine (TT)] and a difunctional amine [n‐butylamine (BA)] NMR techniques were used to clarify the structures of hyperbranched polymers and polymerization mechanism. The reactivity of the secondary amine formed in situ was much lower than that of the primary amines in BA. When the feed molar ratio was 1:1 TT/BA, the secondary amine formed in situ was almost kept out of the reaction before the BA (AA′) and TT (B3) monomers were consumed, and this led to the formation of A′B2 intermediates containing one secondary amine group and two acryl groups. The self‐polymerization of the A′B2 intermediates produced hyperbranched polymers bearing acryl as surface groups. For the polymerization with the feed molar ratio of 1:2 TT/BA, A′2B intermediates containing one acryl group and two secondary amine groups were accumulated until self‐polymerization started; the self‐polymerization of the intermediates formed hyperbranched polymers with secondary amines as their surface groups. Modifications of surface functional groups were studied to form new hyperbranched polymers. The hyperbranched poly(amido amine)s were amorphous. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6226–6242, 2006  相似文献   

9.
Response speed is one of the most important evaluation criteria for CO_2 sensors. In this work, we report an ultrafast CO_2 fluorescent sensor based on poly[oligo(ethylene glycol) methyl ether methacrylate]-b-poly[N,N-diethylaminoethyl methacrylate-r-4-(2-methylacryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole] [POEGMA-b-P(DEAEMA-r-NBDMA)], in which DEAEMA units act as the CO_2-responsive segment and 4-nitrobenzo-2-oxa-1,3-diazole(NBD) is the chromophore. The micelles composed of this copolymer could disassemble in 2 s upon CO_2 bubbling, accompanying with enhanced fluorescence emission with bathochromic shift. Furthermore,the quantum yield of the NBD chromophore increases with both the CO_2 aeration time and the NBD content. Thus we attribute the fluorescent enhancement to the inhibition of the photo-induced electron transfer between unprotonated tertiary amine groups and NBD fluorophores. The sensor is durable although it is based on "soft" materials. These micellar sensors could be facilely recycled by alternative CO_2/Ar purging for at least 5 times, indicating good reversibility.  相似文献   

10.
Hyperbranched poly(amido amine)s containing vinyl and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with equal molar ratio in feed. 1H, 13C and HSQC NMR techniques were used to clarify the structure of hyperbranched polymers and polymerization mechanism. The Michael addition reaction of hyperbranched poly(1TT-1APD)s with primary amine-terminated poly(ε-benzyloxycarbonyl-l-lysine)s [PLys(Z)] yielded a star-like hyperbranched polymers with poly(1TT-1APD) core and Plys(Z) shell. The Z groups in PLys(Z) were removed under acidolysis, and thus star-like hyperbranched polymers with hydroxyl groups inside and primary amine groups outside were obtained successfully.  相似文献   

11.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

12.
Aliphatic hyperbranched poly(amide‐imide) was facilely prepared by employing a functional thiolactone‐maleimide monomer. Highly efficient, selective and quantitative properties of amine‐maleimide Michael addition and aminolysis of a thiolactone guaranteed the generation of an ABB' thiol‐yne intermediate without side products, followed by consecutive thiol‐yne click reaction in one‐pot. The hyperbranched structure of the poly(amide‐imide) was confirmed by NMR spectroscopy and triple‐detector GPC/SEC analysis. Additionally, due to the presence of aminosuccinimide fluorophores and intrinsic physical property of hyperbranched polymers, this aliphatic hyperbranched poly(amide‐imide) possessed solvent‐dependent emission and presented good solubility in various organic solvents. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2053–2060  相似文献   

13.
Abstract Response speed is one of the most important evaluation criteria for CO2 sensors. In this work, we report an ultrafast CO2 fluorescent sensor based on poly[oligo(ethylene glycol) methyl ether methacrylate]-b-poly[N,N-diethylaminoethyl methacrylate-r-4-(2-methylacryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole] [POEGMA-b-P(DEAEMA-r-NBDMA)], in which DEAEMA units act as the CO2-responsive segment and 4-nitrobenzo-2-oxa-1,3-diazole (NBD) is the chromophore. The micelles composed of this copolymer could disassemble in 2 s upon CO2 bubbling, accompanying with enhanced fluorescence emission with bathochromic shift. Furthermore, the quantum yield of the NBD chromophore increases with both the CO2 aeration time and the NBD content. Thus we attribute the fluorescent enhancement to the inhibition of the photo-induced electron transfer between unprotonated tertiary amine groups and NBD fluorophores. The sensor is durable although it is based on “soft” materials. These micellar sensors could be facilely recycled by alternative CO2/Ar purging for at least 5 times, indicating good reversibility.  相似文献   

14.
The synthesis, characterization and photochemical properties of a new polyurethane cationomer (PUC-AN) with anthracene chromophore groups attached on the quaternary ammonium units is reported and compared to those of a model compound (AN) carrying the same moiety. PUC-AN synthesis implied the quaternization reaction with 9-chloromethylanthracene of the tertiary amine of one precursor polymer based on poly(tetramethylene oxide) diol of 2000 average molecular weight, tolylene-2,4-diisocyanate (as 2,4- and 2,6-TDI, 80:20 v/v isomers mixture), N-methyldiethanol amine and terephthalaldehyd-bis(3-hydroxymethylphenylimine) in a molar ratio of 1:3:1:1. The fluorescence spectra of the anthracene structure indicates that the synthesized compounds present different shifts in solution and in the solid state, their photochemical behavior being influenced by monomer and excimer emission. The photophysical investigations revealed that such structures can function as fluorescent chemosensors for transitional metals, showing a fluorescence quenching in the presence of different metal ions (, Fe3+, Cu2+). The quenching mechanisms for PUC-AN and the corresponding model compound (AN) are assigned to electron transfer and/or energy transfer processes of Dexter type.  相似文献   

15.
Hyperbranched poly(ester urethanes) containing end isocyanate groups have been synthesized via the reaction of hyperbranched aliphatic polyesterpolydiols of three generations with tolylene diisocyanate. The interaction of these compounds with N,N-dimethylaminoethanol yields their functional derivatives. The polymers are characterized by functional analysis, 1H NMR and IR spectroscopy, and DSC. It has been demonstrated that the incorporation of urethane moieties leads to development of the microheterogeneous structure of hyperbranched polymers.  相似文献   

16.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

17.
The synthesis and characterization of hyperbranched aromatic poly(ether imide)s are described. An AB2 monomer, which contained a pair of phenolic groups and an aryl fluoro moiety activated toward displacement by the attached imide heterocyclic ring, was prepared. The nucleophilic substitution of the fluoride with the phenolate groups led to the formation of an ether linkage and, subsequently, to the hyperbranched poly(ether imide), which contained terminal phenolic groups. A similar one‐step polymerization involving a monomer that contained silyl‐protected phenols yielded a hyperbranched poly(ether imide) with terminal silylated phenols. The degree of branching of these hyperbranched polymers was approximately 55%, as determined by a combination of model compound studies and 1H NMR integration experiments. End‐capping reactions of the terminal phenolic groups were readily accomplished with a variety of acid chlorides and acid anhydrides. The nature of the chain‐end groups significantly influenced physical properties, such as the glass‐transition temperature and the solubility of the hyperbranched poly(ether imide)s. As the length of the acyl chain of the terminal ester groups increased, the glass‐transition temperature value for the polymer decreased, and the solubility of the polymer in polar solvents was reduced, becoming more soluble in nonpolar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2536–2546, 2001  相似文献   

18.
根据绿色荧光蛋白的发光原理,采用聚乙二醇与聚甲基丙烯酸甲酯的两亲性两嵌段聚合物通过自组装包覆生色团的方式,模拟了绿色荧光蛋白发光,考察了组装行为对光学性能的影响,并将其用于细胞成像.通过核磁共振、高分辨质谱、傅里叶变换红外光谱、凝胶渗透色谱、紫外-可见吸收光谱及荧光光谱等表征了生色团分子和聚合物的结构及性能.生色团紫外最大吸收在371 nm,荧光最大发射峰在428 nm.聚合物和生色团进行组装后,其紫外吸收消失,而最大荧光发射峰强度大大增强,且发生了约70 nm的红移,这是因为组装使得生色团的自由旋转受到了限制,且生色团共平面性增加.动态光散射(DLS)和透射电镜(TEM)证明了纳米粒子的结构和尺寸.由于尺寸适合且具有较好的荧光性能,纳米粒子成功应用于细胞成像.这种绿色荧光蛋白生色团的简单自组装方式在生物成像领域具有良好应用前景.  相似文献   

19.
《中国化学快报》2020,31(7):1822-1826
Hyperbranched polymers have attracted increasing interests due to their unique structure-related advantages and have been utilized as drug carriers for controlled delivery. However, it is still challenging to prepare multi stimuli-responsive hyperbranched polymers to sense and response the complex yet delicate changes in physiological environment. Herein, we propose a triple-stimuli backbone-breakable hyperbranched polymer (HBP(OEG-IB)), which is prepared via the convenient iminoboronate multi-component reaction of α,ω-di(1,2-diol)s oligo(ethylene glycol), tris(3-aminopropyl)amine and 2-formylphenylboronic acid. Upon the stimulation of CO2, lactic acid and glutathione, micelles formed by HBP(OEG-IB) could be disrupted via the dissociation of iminoboronate ester bond to subsequent release incorporated camptothecin (CPT). Cell experiments show that the HBP(OEG-IB) is non-toxic but can enhance the therapeutic effect of CPT thanks to the effect of the protonated tertiary amino groups. The demonstration made in this work can enrich the design of responsive HBPs and can be readily applied to other systems with tunable responsive properties and functions.  相似文献   

20.
超支化聚四氮唑表现出良好的导电性;半结晶超支化聚(酯-酰胺)具有合适的TgTm,可以用于光固化粉末涂料中;含叔胺和硫醚的超支化大分子光引发剂有着良好的光引发活性。本文将主要从这3个方面综述超支化聚合物在新材料领域的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号