首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of chemically modified papaya seed (CMPS) adsorbent with carboxyl and amino groups has been studied. Adsorption experiments were performed with respect to the changes in initial pH of the solution, contact time, initial Hg(II) concentration, and CMPS dosage. Kinetic data were fitted to the pseudo-second-order model. The maximum adsorption capacity calculated by Langmuir model was 18.34 mg/g. CMPS was characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy. The results indicate that adsorption mechanism of CMPS involves ion exchange (2Na+/Hg2+) and carboxylic-group-dominated surface complexation. Regeneration study revealed that CMPS can be used successfully for four cycles with a small adsorption capacity loss (6.8%).  相似文献   

2.
王杰 《高分子科学》2014,32(4):432-438
Nano-sized spherical polymer brushes(SPBs) consisting of both a polystyrene(PS) core and a brush shell of poly(acrylic acid)(PAA), poly(N-acrylcysteamine)(PSH), or poly(N-acrylcysteamine-co-acrylic acid)(P(SH-co-AA)), were prepared by photo-emulsion polymerization. The core-shell structure was observed by dynamic light scattering and transmission electron microscopy. Due to the strengthened Donnan effect, the PAA brush can adsorb heavy metal ions. Effects of the contact time, thickness of PAA brush and pH value on the adsorption results were investigated. Due to the coordination between the mercapto groups and heavy metal ions as well as the electrostatic interactions, SPBs with mercapto groups are capable to remove heavy metal ions selectively from aqueous solutions. The order of adsorption capacity of the heavy metal ions by SPBs with mercapto groups is: Hg2+ ≈ Au3+ Pb2+ Cu2+ Ni2+. The adsorbed heavy metal ions can be eluted from SPB by aqueous HCl solution, and the SPBs can be recovered. After three regenerations the recovered SPBs still maintain their adsorption capacity.  相似文献   

3.
Graphene oxide (GO), an up‐and‐coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy‐metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers’ (HU), Hofmann’s (HO) and Staudenmaier’s (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure–function relationship by using Fourier‐transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy‐metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy‐metal‐ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both PbII and CdII is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy‐metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy‐metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy‐metal‐ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy‐metal‐ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean‐up.  相似文献   

4.
A new chelating resin containing bis[2-(2-benzothiazolylthioethyl)sulfoxide] was synthesized using chloromethylated polystyrene as material and characterized by elemental analysis and infrared spectra. The adsorption capacities of the newly formed resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were investigated over the pH range 1.0-6.0. The resin exhibited no affinity for alkali or alkaline earth metal ions. The maximum adsorption capacities of the resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were 1.49, 0.96, 0.58, 0.11, 0.37, 0, 0.24, 0.36 and 0.25 mmol g−1, respectively. In column operation it had been observed that Hg2+ and Ag+ in trace quantity could be separated from different binary mixtures and Hg2+ could be effectively removed from industrial wastewater and the natural water spiked with Hg2+ at usual pH.  相似文献   

5.
We demonstrate a new material by intercalating Mo3S132? into Mg/Al layered double hydroxide (abbr. Mo3S13-LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3S13-LDH displays ultra-high selectivity of Ag+, Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+>Hg2+>Cu2+>Pb2+≥Co2+, Ni2+, Zn2+, Cd2+. For Ag+ and Hg2+, extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+, especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qmAg=1073 mg g?1) and Hg2+ (qmHg=594 mg g?1) place the Mo3S13-LDH at the top of performing sorbent materials. Most importantly, Mo3S13-LDH captures Ag+ via two paths: a) formation of Ag2S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0). The Mo3S13-LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.  相似文献   

6.
ABSTRACT

A chemically modified-biosorbent was prepared by attaching dithizone onto Salacca zalacca skin waste for Hg2+ bioremoval. The material was synthesized by refluxing dithizone 5% with the Salacca zalacca skin powder followed by drying. The material was characterized through scanning electron microscopy, gas sorption analysis, and Boehm titration. The applicability of the material as biosorbent was tested for Hg2+ adsorption at room temperature. Findings suggested that the modification altered the surface properties of the biosorbent as indicated by the increased values for such surface parameters as specific surface area, pore volume, and quantitative functional groups. Particularly, the material demonstrated a high removal efficiency during Hg2+ adsorption, which fit the pseudo-second-order kinetics. The removal efficiency of Hg2+ was not influenced by the adsorbent dosage of 1–4?g/L.  相似文献   

7.
The preparation and properties of hydrophilic chelating resins containing formazans as functional groups are described. Sucrosemethacrylat-gels with primary aromatic amino groups were diazotised and coupled with various substituted phenylhydrazones yielding gels with formazans as chelating anchor groups. The capacities of the gels were max. 1,6 mmol/g. The recycle of adsorption and elution was found to be satisfactory for Co2+ and Pb2+ whereas only 60% of the bonded Hg2– could be recovered reversibly.
  相似文献   

8.
Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) with 20 amino acids was systematically investigated with Density Functional Theory method. The binding energies calculated at B3LYP-D3/def2TZVP level showed that the contribution order of amino acid side chains to the binding affinity was carboxyl > benzene ring > hydroxyl > sulfhydryl > amino group. The affinity order was inversely proportional to the radius and charge transfer of heavy metal cations, approximately following the order of: Ni2+ > Fe3+ > Cu2+ > Hg2+ > Zn2+ > Cd2+ > Mn2+. Compared to the gas-phase in other researches, the water environment has a significant influence on structures and binding energies of the heavy metal and amino acid binary complexes. Collectively, the present results will provide a basis for the design of a chelating agent (e.g., adding carboxyl or a benzene ring) to effectively remove heavy metals from the environment.  相似文献   

9.
A simple and sensitive method to determine Hg2+ was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg2+ elution conditions, namely, an FI flow rate of 2.0 mL min−1 and an eluent comprised of 10% thiourea in 0.2 mol L−1 HNO3. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L−1, and the precision of the 11 replicate Hg2+ measurements was 0.86% at a concentration of 100 μg L−1. The proposed method was validated by determining Hg2+ in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310).  相似文献   

10.
3‐Hydroxy‐N,N‐diethylaniline (HDEA) as a tertiary aromatic amine was introduced onto the surface of chloromethylated polysulfone (CMPSF) microfiltration membrane through modification reaction, resulting in the modified membrane PSF‐DEA. A redox surface‐initiating system (DEA/APS) was constituted by the bonded tertiary aromatic amine group DEA and ammonium persulfate (APS) in aqueous solution, and so, the free radicals formed on the membrane initiated sodium p‐styrenesulfonate (SSS) as an anionic monomer to produce graft polymerization, getting the grafting‐type composite microfiltration membrane, PSF‐g‐PSSS membrane. Subsequently, the adsorption property of PSF‐g‐PSSS membrane for three heavy metal ions, Pb2+, Zn2+, and Hg2+ ions, was fully examined, and the rejection performance of PSF‐g‐PSSS membrane towards the three heavy metal ions was emphatically evaluated via permeation experiments. The experimental results show that by the initiating of the surface‐initiating system of DEA/APS, the graft polymerization can smoothly be carried out under mild conditions. PSF‐g‐PSSS membrane as a functional microfiltration membrane has strong adsorption ability for heavy metal ions by right of strong electrostatic interaction (or ion exchange action) between the anionic sulfonate ions on the membrane and heavy metal ions. The order of adsorption capacity is Pb2+ > Zn2+ > Hg2+, and the adsorption capacity of Pb2+ ion gets up to 2.18 μmol/cm2. As the volume of permeation solutions, in which the concentrations of the three metal ions are 0.2 mmol/L, are in a range of 50 to 70 mL, the rejection rate of PSF‐g‐PSSS membrane for the three heavy metal ions can reach a level of 95%, displaying a fine rejection and removing performance towards heavy metal ions.  相似文献   

11.
The polar organic molecule N-(2-hydroxyethyl)-3,5-dimethylpyrazole reacted with a 3-glycidoxypropyltrimethoxysilane silylant agent, previously anchored on a silica surface in a heterogeneous way to yield the product SiPz. The epoxide group was opened yielding chelating pendant group bonded to the inorganic surface. The product was characterized through elemental analysis, infrared spectroscopy, 13C NMR, surface area and thermogravimetry. The binding and adsorption abilities of SiPz was investigated for Hg2+, Cd2+, Pb2+, Cu2+, Zn2+, K+, Na+ and Li+ cations and compared to results of classical liquid-liquid extraction with the unbound N-pyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the SiPz exhibits a high selectivity toward Hg2+ ion with no complexation being observed towards Zinc and alkali metals. The extracted and the complexing cation percentage were determined by atomic absorption measurements.  相似文献   

12.
Zn‐Fe layered double hydroxide with chloride intercalation (ZFCL) was synthesized by a coprecipitation method at room temperature. ZFCL was characterized by N2 adsorption‐desorption isotherms, X‐ray diffraction, scanning electron microscope, Zeta‐sizer analyzer, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The results showed that ZFCL had large surface area and layered structure. The maximum adsorption capacity of ZFCL was 150.6 mg/g at 25°C. That was higher than most other adsorbent which were reported. The kinetic data were described better by the pseudo‐second‐order adsorption kinetic rate model. The adsorption isotherm on the adsorbent was described by Langmuir, Freundlich, and Sips models at pH 6 and followed the fitting order: Sips >Freundlich>Langmuir. Thermodynamic analyses indicated that the phosphate adsorption on ZFCL was endothermic and spontaneous in nature. The sequence of coexisting cations and anions competing with phosphate was Ca2+ > Mg2+ > Na+ and SO42− > NO3 > Cl. ZFCL can be regenerated by the sequential use of NaOH and ZnCl2. The adsorption capacity remained high as 108.6 mg/g after regeneration of 3 times. The results of zeta potential, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy analyses indicated that the phosphate adsorption mechanisms involved ion exchange, Zn3(PO4)2 precipitation, and the formation of inner‐sphere complex via replacement of surface hydroxyl groups by phosphate.  相似文献   

13.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

14.
The preparation of malonic acid‐catalyzed carbon xerogels modified with nitric acid and their high performance for adsorption of Cu2+ were investigated. The treated and untreated carbon xerogels (nitrogen‐doped carbon xerogel and carbon xerogel) are mainly microporous with high surface areas (1150.18 and 1201.46 m2 g?1) based on the analysis of N2 adsorption isotherm. Fourier transform infrared spectroscopy study demonstrates that modification process generates a number of functional groups such as carboxyl, carbonyl, and nitrate groups. X‐ray photoelectron spectra analysis shows an increase in the content of O and N after oxidation. The adsorption performance for Cu2+ using different process parameters like initial concentration, contact time, and temperature was investigated. The result indicates that the pseudo‐second order correlates with the experimental data, and the activation energy of Cu2+ adsorption onto nitrogen‐doped carbon xerogel and carbon xerogel is calculated as 15.62 kJ mol?1 and 2.79 kJ mol?1, respectively, indicating the coexistence of chemisorption and ion‐exchange. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of Cu2+. The adsorption of Cu2+ by carbon xerogels modified with nitric acid was fast and had noticeable adsorption capacity, with a higher adsorption capacity than the original carbon xerogels (299.41 vs 260.42 mg g?1). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Fe(0) was firstly used as single‐electron transfer‐living radical polymerization catalyst for acrylonitrile polymerization using carbon tetrachloride as initiator, hexamethylenetetramine as N‐ligand, and N,N‐dimethylformamide as the solvent at 65 °C. First‐order kinetic studies indicated that this polymerization proceeded in a “living”/controlled manner. The living nature of the polymerization was also confirmed by chain extension of methyl methacrylate with polyacrylonitrile (PAN) as macroinitiator. Furthermore, PAN was modified with NH2OH·HCl to generate amidoxime groups for extraction of heavy metal ions (Hg2+) from aqueous solutions. Fourier transformed infrared spectroscopy was performed to characterize chemical composition and structure. The adsorption property of Hg2+ was investigated at different pH values of aqueous solutions and distilled water. The maximal saturated adsorption capacity of Hg2+ was 4.8 mmol g?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
合成了具有高吸附容量的聚乙烯苄多乙烯多胺二硫代羧酸大孔型螫合树脂(DTC树脂)。探讨了胺化和二硫代羧化中各种反应条件的影响。制得的DTC树脂对Hg~(2+)、Cu~(2+)、Zn~(2+)、Cd~(2+)的吸附容量分别达4.40、2.44、1.77、1.36毫摩尔离子/克,在水中对微量的重金属离子在较宽pH范围内有良好的捕集效果。红外光谱、元素分析证实了合成过程中树脂功能基的转化。  相似文献   

17.
Two novel chelating resins were prepared by anchoring ethylenediamine to crosslinked polystyrene via a spacer containing sulfide. Their structures were characterized by Fourier transform-infrared spectra (FTIR) and scanning electron microscopy (SEM). Porous structure parameters of the resins were measured by ASAP 2020 using BET and BJH methods. Their adsorption capacities for several heavy metal ions especially Hg2+ were investigated. The results showed that for the two resins, the more N contents did not mean the better adsorption capacity and the saturated adsorption capacity of poly(2-ethylenediamidomercaptomethylstyrene) (PSM-EDA) for Hg2+ could reach to 3.0 mmol/g at room temperature. Isothermal adsorptions of the resins for Hg2+ could be described by Langmuir formula. The adsorption mechanism of the resins for Hg2+, Cu2+ and Ag+ was confirmed by X-ray photoelectron spectroscopy (XPS) and FTIR.  相似文献   

18.
在N,N′-羰基二咪唑(CDI)的偶联作用下,将双硫脲(DTA)修饰在聚丙烯酸接枝聚丙烯(PP-g-AA)纤维表面,得到双硫脲基螯合纤维(PP-g-AA-DTA),并探讨了该螯合纤维对Hg 2+的吸附性能。采用傅里叶红外光谱、X射线光电子能谱、扫描电子显微镜等研究了螯合纤维结构、不同吸附条件对Hg 2+吸附的影响以及选择性吸附特性。结果表明准二级动力学模型和Langmuir模型可以很好地描述吸附过程,饱和吸附容量为66.40 mg/g。该新型螯合纤维可望应用于水体中Hg 2+的去除领域。  相似文献   

19.
The title resins (DTC resins) with high adsorption capacity were prepared. The influences of various reaction conditions of amination and dithiocarboxylation were examined. The adsorption capacities of the produced DTC resin for Hg~(2 ), Cu~(2 ), Zn~(2 ) and Cd~(2 ) are 4.40, 2.44, 1.77 and 1.36 mmol/g, respectively. It is highly effective in collecting traces of heavy metal ions in water over a wide pH range. The conversion of the functional groups were confirmed by the IR-spectra and elementary. analysis.  相似文献   

20.
A series of acyclic Schiff base podands 14?C19 with lipophilic amide and ester end groups were synthesized in good yield and in a simple way. Their transition metal ions complexation was studied using conductometric method in acetonitrile (AN) at 25 °C. Schiff base podands 14?C16 showed a continuous decrease in the molar conductances in their complexation with Hg2+, Pb2+, Cu2+, Zn2+ and Cd2+ which begins to level off at a mole ratio of 1:1 crown-to-metal indicating the formation of a stable 1:1 complexes. The order of the stability constants of the metal ions studied with the Schiff base podands 14, 15 and 16 is: Hg2+ > Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ag+. Metal ion complexation by acyclic diamide or diester podands involves presumably the oxygen atoms of the carbonyl groups in addition to the nitrogen atoms of the imino groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号