首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Auger KLn lines are observed in high-resolution electron spectra obtained in collisions of mixed-state (1s21S,1s2s3S) He-like beams of 4 MeV B3+ with H2 and 6 MeV C4+ with He targets. Supporting atomic structure calculations show these lines to correspond to doubly excited states, which can be readily populated by electron transfer to the component of the mixed-state beam. They thus provide indirect evidence for the existence of the corresponding KLn quartet states, similarly produced, even though their weak Auger decay does not allow for their direct observation in the electron spectra. These KLn quartet states mostly decay in a cascade chain of strong radiative E1 transitions, eventually terminating at the state, which is thus additionally enhanced. An upper limit on the state population due to cascades is obtained by assuming a statistical production of KLn quartet to doublet states followed by a 100% cascade feeding of the state. Our estimated upper limit is supported by our absolute cross section measurements and corresponding three-electron atomic orbital close coupling calculations in progress. Results to date are presented and discussed.  相似文献   

2.
The relativistic distorted-wave program of the flexible atomic code for calculating the cross sections for electron-impact excitation of ions between fine-structure levels is extended to get the multipole components of cross sections in the case of excitation by isotropic electrons. These components may be needed for interpreting the intensity and polarization of line emissions from thermal plasmas exposed to anisotropic radiations, such as the solar corona under photosphere irradiation. Illustrative numerical results are given for excitation of Si-like Fe12+ between the , and levels. These results can be useful in the analysis of infrared forbidden lines emitted from the solar corona. A comparison is made with the only published work based on the semi-relativistic distorted-wave approximation, showing some agreement for the excitation and discrepancies for the weak transition .  相似文献   

3.
Linear properties of low-frequency electromagnetic shear Alfven waves (SAWs) are studied in quantum electron-positron-ion plasmas with effect of arbitrary temperature degeneracy for magnetized () and unmagnetized ( ) ions by using the quantum hydrodynamic model. Dispersion relations are derived for nearly degenerate () and nearly non-degenerate () plasmas. Bohm potential due to density correlation and temperature degeneracy due to Fermi–Dirac statistics of electron–positron, and their effects on the dispersion of SAWs are studied in detail both analytically and numerically. The relevance of the work regarding dense astrophysical plasmas is highlighted.  相似文献   

4.
In this paper, a plasma sheath containing primary electrons, cold positive ions, and secondary electrons is studied using a one-dimensional fluid model in which the primary electrons are described by q-non-extensive distribution according to the Tsallis statistics. Based on the Sagdeev potential method and the current balance relation, a modified sheath criterion, and floating potential are established theoretically. The effect of secondary electron emission on q-non-extensive plasma sheath characteristics have been numerically examined. A significant change is observed in the quantities characterizing the non-extensive plasma sheath with the presence of the secondary electrons. It is found that the sheath properties with super-extensive distribution and sub-extensive distribution are different compared with plasma sheath with Maxwell distribution .  相似文献   

5.
The uniform electron gas (UEG) is one of the key models for the understanding of warm dense matter—an exotic, highly compressed state of matter between solid and plasma phases. The difficulty in modelling the UEG arises from the need to simultaneously account for Coulomb correlations, quantum effects, and exchange effects, as well as finite temperature. The most accurate results so far were obtained from quantum Monte Carlo (QMC) simulations with a variety of representations. However, QMC for electrons is hampered by the fermion sign problem. Here, we present results from a novel fermionic propagator path integral Monte Carlo in the restricted grand canonical ensemble. The ab initio simulation results for the spin-resolved pair distribution functions and static structure factor are reported for two isotherms (T in the units of the Fermi temperature). Furthermore, we combine the results from the linear response theory in the Singwi-Tosi-Land-Sjölander scheme with the QMC data to remove finite-size errors in the interaction energy. We present a new corrected parametrization for the interaction energy and the exchange–correlation free energy in the thermodynamic limit, and benchmark our results against the restricted path integral Monte Carlo by Brown et al. [Phys. Rev. Lett. 110 , 146405 (2013)] and configuration path integral Monte Carlo/permutation-blocking path integral Monte Carlo by Dornheim et al. [Phys. Rev. Lett. 117 , 115701 (2016)].  相似文献   

6.
7.
A multispecies magnetized collisional nonthermal plasma system, containing inertial ion species, noninertial electron species following nonthermal -distribution, and immobile dust particles, is considered to examine the characteristics of the dissipative dust-ion-acoustic soliton modes, theoretically and parametrically. The electrostatic solitary modes are found to be associated with the low-frequency dissipative dust-ion-acoustic solitary waves (DIASWs). The ion-neutral collision is taken into account, and the influence of ion-neutral collisional effects on the dynamics of dissipative DIASWs is investigated. It is reported that most of the plasma medium in space and laboratory are far from thermal equilibrium, and the particles in such plasma system are well fitted via the -nonthermal distribution than via the thermal Maxwellian distribution. The reductive perturbation approach is adopted to derive the damped KdV (dKdV) equation, and the solitary wave solution of the dKdV equation is derived via the tangent hyperbolic method to analyse the basic features (amplitude, width, speed, time evolution, etc.) of dissipative DIASWs. The propagation nature and also the basic features of dissipative DIASWs are seen to influence significantly due to the variation of the plasma configuration parameters and also due to the variation of the supethermality index in the considered plasma system. The implication of the results of this study could be useful for better understanding the electrostatic localized disturbances, in the ion length and time scale, in space and experimental dusty plasmas, where the presence of excess energetic electrons and ion-neutral collisional damping are accountable.  相似文献   

8.
The linear properties of magnetosonic waves are studied in nearly degenerate and nearly non-degenerate quantum plasmas composed of electrons, positrons and ions in the presence of spin- effect. Using the fluid equations, a generalized dispersion relation for perpendicular and oblique propagation is derived. It is found that degree of temperature and spin degeneracy modify the dispersive properties of the given modes. The results of analysis are beneficial for understanding the collective phenomena in dense quantum astrophysical plasmas.  相似文献   

9.
We report a measurement of the two X-ray transitions that proceed from the and (1s22s1/22p63p1/2)J = 1 upper levels to the (1s22s22p6)J = 0 ground level in neonlike Eu53+ (Z = 63), that is,  near the previously documented avoided crossing of the two upper levels at Z = 68. The measurement was carried out using the calorimeter spectrometer on the Livermore EBIT-I electron beam ion trap. It affirms the trends set by the neighboring neonlike ions both in terms of the relative intensity of the two lines and in terms of the magnitude of disagreement with theoretical energy level predictions.  相似文献   

10.
Zinc K-shell radiative and radiationless transition rates are calculated using the multiconfiguration Dirac–Fock method. Correlation up to the 4p orbital is included in almost all transition rate calculations. Calculated radiative transition rates and transition probabilities are compared with Scofield's Dirac–Hartree–Slater and Dirac–Hartree–Fock calculations, presenting good agreement with the later. Radiative transition intensity ratios involving the strongest lines are compared with theoretical, experimental, and empirical-fit values. Most ratios are in close agreement with the empirical-fit values from NIST's Fundamental Parameters database. Calculated radiationless transition rates and ratios are compared with Chen et al.'s Dirac–Fock values and Safronova et al.'s Dirac–Fock values. The K-LL transition rates are overall lower than Chen et al.'s values, whereas the K-LX and K-XY transition rates are overall higher. Calculated K-LX/K-LL and K-XY/K-LL ratios are relatively close to the experimental values compared. Some calculated intensities relative to K-L are in good agreement with the experimental values, whereas others present worse agreement. The calculated fluorescence yield is higher than all theoretical, experimental, and empirical-fitted values compared, probably because the total radiationless transition rate value calculated in the present work is relatively low.  相似文献   

11.
The Landau damping of the dust ion-acoustic wave (DIAW) in a dusty plasma with non-extensive distributed components is analysed relying on the kinetic approach. The electron, ion, and dust particles are effectively modelled by the non-extensive distribution function of the Tsallis statistics. For a collisionless plasma with different values of plasma components indices, the general dispersion relation is achieved, and the non-extensivity effects on the frequency, as well as the Landau damping of the DIAW, are studied. We show that for , the preliminary results of the Maxwellian plasma are obtained. The decrease of wave damping is achieved by increasing the coefficient q index and the ion-to-electron density ratio. The damping rate also increases with an increasing ion-to-electron temperature ratio.  相似文献   

12.
At first, we present a brief review of the problem. Then, we consider plasma phase transition (PPT) as a mechanism of the first order fluid–fluid phase transition in warm dense hydrogen. The pros and cons are analysed. The properties of warm dense hydrogen are investigated by ab initio methods of molecular dynamics using the density functional theory. Strong ionization during the fluid–fluid phase transition in warm dense hydrogen makes this transition close to the prediction of the PPT. Finally, we present differences in the real phase transition from the prediction 1968–1969. Structures are observed with inter‐proton separations that are equal to the distances between protons in the and ions. The transition is not only ionization, but also structural. An analysis of the phase transition counterpart in solid hydrogen under high pressure allows us to reveal partially the character of the new structure. The ionized phase includes complex cluster ions. Van der Waals loops are of abnormal inverted form.  相似文献   

13.
The filamentation instability is one of the basic beam-plasma instabilities that play a significant role in the energy deposition mechanism of the relativistic electrons generated by the laser-plasma interaction in the fast ignition scenario. In this paper, the effect of the density gradient into plasma on the filamentation instability was investigated in the Weibel unstable plasma, where the plasma temperature anisotropy can play an important role. Results indicated that the density gradient enhances the instability growth rate so that decreasing the density gradient from the critical surface to the core of fuel leads to instability for longer regions in k space. Also, investigations in the region close to the critical surface showed that for decreasing the beam number density nb ≤ 0.01n0, the instability occurs for while this can be different for higher values. Increasing the beam relativistic factor causes a decreasing peak of instability growth rate because of a reduction in beam current, whereas the initial thermal spread of plasma amplifies the filamentation instability.  相似文献   

14.
In this paper we consider the ‐graded parity generalizing the ordinary (or Z2‐graded ) parity. Using the ‐graded parity operator, we discuss the minimal bosonization of the N=2 SUSY with ‐graded parity. The lowest energy level is shown to be infinitely degenerate. In order to avoid the infinite degeneracy of the ground state we introduce the paraboson algebra to obtain the para‐supersymmetry. Finally, we discuss the hidden SUSY with Z3‐graded parity.  相似文献   

15.
The standard model has for massless quarks and leptons “miraculously” no triangle anomalies due to the fact that the sum of all possible traces — where and are the generators of one, of two or of three of the groups and U (1) — over the representations of one family of the left handed fermions and anti‐fermions (and separately of the right handed fermions and anti‐fermions), contributing to the triangle currents, is equal to zero. 1 - 4 It is demonstrated in this paper that this cancellation of the standard model triangle anomaly follows straightforwardly if the and are the subgroups of the orthogonal group , as it is in the spin‐charge‐family theory. 5 - 22 We comment on the anomaly cancellation, which works if handedness and charges are related “by hand”.  相似文献   

16.
A more general and realistic four-component magnetized plasma medium consisting of opposite polarity ions and nonthermal distributed positrons and electrons is considered to investigate the stable/unstable frequency regimes of modulated ion-acoustic waves (IAWs) in the D-F regions of Earth's ionosphere. A (3 + 1) -dimensional nonlinear Schrödinger equation, which leads to the modulation instability (MI) of IAWs, is derived. The parametric regimes for the existence of the MI, first- and second-order rogue waves, and also their basic features (viz., amplitude, width, and speed) are found to be significantly modified by the effect of physical plasma parameters and external magnetic field. It is found that the nonlinearity of the different types of electronegative plasma system depends on the positive to negative ion mass ratio. It is also shown that the presence of nonthermal distributed electrons and positrons modifies the nature of the MI of the modulated IAWs. The implication of our results for the laboratory plasma [e.g., (Ar+, F ) electronegative plasma] and space plasma [e.g., (H+, H ), () electronegative plasma in D-F regions of Earth's ionosphere] are briefly discussed.  相似文献   

17.
We provide a model‐independent argument indicating that for a black hole of entropy N the non‐thermal deviations from Hawking radiation, per each emission time, are of order , as opposed to . This fact abolishes the standard a priory basis for the information paradox.  相似文献   

18.
We compute the Hodge numbers for the quotients of complete intersection Calabi‐Yau three‐folds by groups of orders divisible by 4. We make use of the polynomial deformation method and the counting of invariant Kähler classes. The quotients studied here have been obtained in the automated classification of V. Braun. Although the computer search found the freely acting groups, the Hodge numbers of the quotients were not calculated. The freely acting groups, G, that arise in the classification are either or contain , , or as a subgroup. The Hodge numbers for the quotients for which the group G contains or have been computed previously. This paper deals with the remaining cases, for which or . We also compute the Hodge numbers for 99 of the 166 CICY's which have quotients.  相似文献   

19.
In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non‐perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order , inexorably leads to a “localised” divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like . Therefore, while at a distance far away from the horizon, where , quantum corrections are perturbative, they do diverge close to the horizon, where . Nevertheless, these “corrections” nicely re‐sum so that correlations functions are smooth at the would‐be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes.  相似文献   

20.
We first review the Coset Space Dimensional Reduction (CSDR) programme and present the best model constructed so far based on the , 10‐dimensional E8 gauge theory reduced over the nearly‐Kähler manifold with the additional use of the Wilson flux mechanism. Then we present the corresponding programme in the case that the extra dimensions are considered to be fuzzy coset spaces and the best model that has been constructed in this framework too. In both cases the best model appears to be the trinification GUT .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号