首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzimidazoles and their derivatives including imidazole are studied widely because they exist in the structure of natural products and different drugs. pKa values are extremely important for drug discovery and improvement in order to determine pharmacokinetic and pharmacodynamic features such as permeation through biological barriers, interactions with the target area or side effects. Acid–base features (pKa) have great importance not only for physiological characteristics but also for being used as a ligand or changing physico‐chemical features by turning benzimidazoles into salts. Within the scope of this study, a variety of new benzimidazole salts were synthesized, and their characterizations were made by NMR spectroscopy, FTIR spectroscopy and element analysis techniques. The pKa values of synthesized benzimidazole salts were determined by inflection point approach using integration values obtained with 1H NMR spectroscopy and Henderson–Hasselbalch analysis. pKa values of some benzimidazole salts were also determined by potentiometric methods in order to compare those of NMR spectroscopy results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Adding to the versatile class of ionic liquids, we report the detailed structure and property analysis of a new class of asymmetrically substituted imidazolium salts, offering interesting thermal characteristics, such as liquid crystalline behavior, polymorphism or glass transitions. A scalable general synthetic procedure for N-polyaryl-N’-alkyl-functionalized imidazolium salts with para-substituted linker (L) moieties at the aryl chain, namely [LPhmImHR]+ (L=Br, CN, SMe, CO2Et, OH; m=2, 3; R=C12, PEGn; n=2, 3, 4), was developed. These imidazolium salts were studied by single-crystal X-ray diffraction (SC-XRD), NMR spectroscopy and thermochemical methods (DSC, TGA). Furthermore, these imidazolium salts were used as N-heterocyclic carbene (NHC) ligand precursors for mononuclear, first-row transition metal complexes (MnII, FeII, CoII, NiII, ZnII, CuI, AgI, AuI) and for the dinuclear Ti-supported Fe-NHC complex [(OPy)2Ti(OPh2ImC12)2(FeI2)] (OPy=pyridin-2-ylmethanolate). The complexes were studied concerning their structural and magnetic behavior via multi-nuclear NMR spectroscopy, SC-XRD analyses, variable temperature and field-dependent (VT-VF) SQUID magnetization methods, X-band EPR spectroscopy and, where appropriate, zero-field 57Fe Mössbauer spectroscopy.  相似文献   

3.
The goal of this study was to prepare novel glassy carbon electrode surfaces using two similar bis-diazonium salts, 3,8-benzo[c]cinnoline (3,8-BCC-BDAS) and 3,8-benzo[c]cinnoline 5-oxide (3,8-BCCNO-BDAS) at the glassy carbon (GC) surface. These diazonium salts were reduced electrochemically and covalently electrografted onto the glassy carbon electrode surface to form modified electrodes. Electrochemical reduction of 3,8-BCC-BDAS and 3,8-BCCNO-BDAS salts on the electrode surface yielded a compact and stable film. The existence of BCC moieties on the GC surface was characterized by X-ray photoelectron spectroscopy, reflectance-adsorption infrared spectroscopy, cyclic voltammetry, ellipsometry, and electrochemical impedance spectroscopy. The stability and working potential range of the novel modified electrodes were also studied. The possibility of analytical application of these novel surfaces for inorganic cations and especially selectivity to copper ions was investigated. 3,8-diaminobenzo[c]cinnoline (3,8-DABCC) and its 5-oxide derivative (3,8-DABCCNO) were synthesized from the reductive cyclization of 2,2′-dinitrobenzidine and prepared their bisdiazonium salts via the tetrazotization reactions of the diamines with NaNO2. The structures of 3,8-DABCC and 3,8-DABCCNO and their corresponding bisdiazonium salts are confirmed by spectral analysis.  相似文献   

4.
The stability against hydrolysis of triazine tricarboxylate (TTC) in the presence of divalent transition metal and alkaline earth ions was investigated by means of X‐ray diffraction and FTIR spectroscopy. Depending on the size of the cation either formation of the respective triazine tricarboxylate salts or hydrolysis of TTC yielding oxalate was observed. The hydrolysis of TTC induced by transition metal ions could be explained in analogy to the hydrolysis of triazine tris(2‐pyrimidyl) as a result of ring tension caused by the coordination of these ions. By the reaction of potassium triazine tricarboxylate with alkaline earth salts in aqueous solution the alkaline earth triazine tricarboxylates M3[C3N3(CO2)3]2 · 12H2O (M = Sr, Ba) were obtained and analyzed by single‐crystal X‐ray diffraction. The isotypic salts represent the first examples of alkaline earth triazine tricarboxylates and the first TTC salts comprising solely divalent cations.  相似文献   

5.
As a key research objective for environmentally friendly energetic materials, energetic salts without heavy metal have received wide attention. The energetic salts DAG · PA · H2O ( 1 ) and DAG · TNR · H2O ( 2 ) were synthesized by using diamino‐glyoxine (DAG) and picric acid (PA) or 2, 4,6‐trinitro‐resorcinol (TNR) as raw materials, and their structures were characterized by elemental analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. Single crystals of the title salts were cultured and their structures were determined by X‐ray single‐crystal diffraction. Both salts belong to the triclinic space group P1 with density values of 1.764 and 1.751 g · cm–3, respectively. The thermal decomposition behaviors of both salts were investigated by differential scanning calorimetry (DSC), the non‐isothermal kinetic parameters and the critical temperature of thermal explosion were calculated. The heats of formation for the salts were also determined through the combustion heats date measured by using the oxygen bomb calorimetry. In addition, the detonation pressure (P) and detonation velocities (D) of the salts were predicted by using the K‐J equations, and their sensitivities towards impact and friction were tested. The results indicated that the title salts have potential applications in the field of energetic materials.  相似文献   

6.
According to previous reports, metal cations or water molecules are necessary for the stabilization of pentazolate anion (cyclo‐N5?) at ambient temperature and pressure. Seeking a new method to stabilize N5? is a big challenge. In this work, three anhydrous, metal‐free energetic salts based on cyclo‐N5? 3,9‐diamino‐6,7‐dihydro‐5 H‐bis([1,2,4]triazolo)[4,3‐e:3′,4′‐g][1,2,4,5] tetrazepine‐2,10‐diium, N‐carbamoylguanidinium, and oxalohydrazinium (oxahy+) pentazolate were synthesized and isolated. All salts were characterized by elemental analysis, IR spectroscopy, 1H, 13C, and (in some cases) 15N NMR spectroscopy, thermal analysis (TGA and DSC), and single‐crystal XRD analysis. Computational studies associated with heats of formation and detonation performance were performed by using Gaussian 09 and Explo5 programs, respectively. The sensitivity of the salts towards impact and friction was determined, and overall the real N5 explosives showed promising energetic properties.  相似文献   

7.
Preyssler heteropolytungstophosphate anions with different counter ions, X x M y [NaP5W30O110], where X = H and M = Cs, Ba, La, Ce, Hg, Tl, Pb and Bi, were prepared and the effect of the counter ion on their behavior was investigated by i.r. spectroscopy, surface area measurements (BET), simultaneous thermal analysis (STA), cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Thermal analyses indicate that the Ce derivative has the highest and the Hg derivative the lowest thermal stability. Only the Cs, Ba and Tl salts show measurable surface area. All heteropolyanions with similar i.r. spectra and electrochemical behavior demonstrate that the heteropolyanion structures are retained. The X-ray photoelectron spectra of the heteropolyacid salts reveal high binding energies for counter ions in comparison with classic salts and strong interaction of counter ion with the oxo oxygen's for H+ and Cs+ derivatives.  相似文献   

8.
Energetic salts of en · PA · H2O and en · TNR were synthesized by using ethylenediamine and picric acid (PA) or 2,4,6‐trinitroresorcinol (TNR) as raw materials, and their structures were characterized by elemental analysis and FT‐IR spectroscopy. Single crystals of the title salts were obtained and their structures were determined by single‐crystal X‐ray diffraction. The thermal decomposition behaviors were investigated by DSC and TG‐DTG technologies, furthermore the non‐isothermal kinetic parameters and enthalpies of formation for the salts were calculated. Their combustion heats were measured by oxygen bomb calorimetry and their enthalpies of formation were also calculated based on the combustion heat data. In addition, the detonation pressure (P) and detonation velocities (D) of the salts were predicted by using the K‐J equations. The results indicated that the title salts have potential applications in the field of energetic materials.  相似文献   

9.
Alkali metal salts of acrylamide C3H4NOM (M = Li, Na, and K) were synthesized for the first time by metallation of acrylamide with alkali metals, their alkyl derivatives, or hydrides. The structures of the compounds synthesized were studied by Raman and IR spectroscopy. Based on the results obtained, an ionic structure was proposed for the salts. The salts were tested as initiators of the anionic polymerization of acrylamide. The catalytic activity of C3H4NOM in the polymerization of acrylamide is not lower than that of the well known catalyst, KOBu1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2316–2319, September, 1996.  相似文献   

10.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

11.
The reaction of 1‐alkylbenzimidazole derivatives with o‐/p‐di(chloromethyl)benzene results in the formation of the new o‐/p‐xylyl‐linked bis(benzimidazolium) salts, 1 and 2, respectively. The salts were characterized by NMR spectroscopy and elemental analysis. The in situ prepared complexes derived from Pd(OAc)2–1 and 2 exhibit catalytic activity (61–98%), to give the Heck coupling products of aryl bromides and styrene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Carboxylated three-membered ring derivatives of a polypentenamer (PP) that contained 82% trans and 17% cis double bonds were prepared by carbene addition of ethyldiazoacetate with a copper catalyst to the double bonds and subsequent hydrogenation of the residual unsaturation. In this way derivatives that contained approximately either 5 or 10 mole % three-membered rings with ester side groups were obtained. These side groups were further reacted by hydrolysis or neutralization to form carboxylic acid and cesium salts of carboxylic acid. Reaction conditions were chosen so that no backbone degradation occurred and side reactions that led to crosslinking were avoided. The derivatives were characterized by gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was found that an increase in substituent concentration decreased the melting point (Tm) in hydrogenated derivatives and increased the glass transition temperature (Tg) in unhydrogenated derivatives. The cesium salts of carboxylic acid were the least thermally stable among those studied and the hydrogenated derivatives were generally more stable than the unhydrogenated.  相似文献   

13.
High‐resolution solid‐state 109Ag and 31P NMR spectroscopy was used to investigate a series of silver dialkylphosphite salts, Ag(O)P(OR)2 (R = CH3, C2H5, C4H9 and C8H17), and determine whether they adopt keto, enol or dimer structures in the solid state. The silver chemical shift, CS, tensors and |J(109Ag, 31P)| values for these salts were determined using 109Ag (Ξ = 4.652%) NMR spectroscopy. The magnitudes of J(109Ag, 31P) range from 1250 ± 10 to 1318 ± 10 Hz and are the largest reported so far. These values indicate that phosphorus is directly bonded to silver for all these salts and thus exclude the enol structure. All 31P NMR spectra exhibit splittings due to indirect spin–spin coupling to 107Ag (I = 1/2, NA = 51.8%) and 109Ag (I = 1/2, NA = 48.2%). The 1J(109Ag, 31P) values measured by both 109Ag and 31P NMR spectroscopy agree within experimental error. Analysis of 31P NMR spectra of stationary samples for these salts allowed the determination of the phosphorus CS tensors. The absence of characteristic P?O stretching absorption bands near 1250 cm?1 in the IR spectra for these salts exclude the simple keto tautomer. Thus, the combination of solid‐state NMR and IR results indicate that these silver dialkylphosphite salts probably have a dimer structure. Values of silver and phosphorus CS tensors as well as 1J(109Ag, 31P) values for a dimer model calculated using the density functional theory (DFT) method are in agreement with the experimental observations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Sterically unprotected thiophene/phenylene co‐oligomer radical cation salts BPnT.+[Al(ORF)4]? (ORF=OC(CF3)3, n=1–3) have been successfully synthesized. These newly synthesized salts have been characterized by UV/Vis‐NIR absorption and EPR spectroscopy, and single‐crystal X‐ray diffraction analysis. Their conductivity increases with chain length. The formed meso‐helical stacking by cross‐overlapping radical cations of BP2T.+ is distinct from previously reported face‐to‐face overlaps of sterically protected (co‐)oligomer radical cations.  相似文献   

15.
The complex salts [Rh(γ-Pic)4Cl2]X, where X = Cl, ReO4, or ClO4, were synthesized and characterized by IR spectroscopy, elemental analysis, X-ray powder diffraction, and single-crystal X-ray diffraction. The salts containing the ReO4 and ClO4 ions are isostructural. The oxidation of the γ-picoline complexes afforded a complex with isonicotinic acid. The crystalline product of the oxidation reaction was isolated and characterized by X-ray diffraction. The crystal structure contains two types of rhodium complex cations, which differ in the number of oxidized γ-picoline molecules. Thermal transformations of the complexes were studied by DTA, as well as by DTA coupled with evolved gas analysis. The thermolysis products were isolated and studied by IR and NMR spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1607–1613, August, 2008.  相似文献   

16.
The effect of a series of tetramethylammonium salts with different counter anions on the photophysical properties of a chiral Eu(III) complex (Eu(D-facam)3) was investigated. Anion-dependent luminescence of the Eu(III) complex was observed, and particularly in the presence of acetate ions, an outstanding luminescence enhancement (>300 times) and induced circularly polarized luminescence (glum=−0.63) were obtained. The energy transfer process was then evaluated using key photophysical parameters, and it was found that the sensitisation efficiency of the Eu(III) complex significantly increased in the presence of tetramethylammonium acetate (TMAOAc). The interactions between Eu(D-facam)3 and TMAOAc were confirmed by luminescence analysis, circular dichroism spectroscopy, Fourier transform infrared spectroscopy and mass spectral measurements.  相似文献   

17.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

18.
By employing the subcomponent self‐assembly approach utilizing 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin or its zinc(II) complex, 1H ‐4‐imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O‐symmetric cages having a confined volume of ca. 1300 Å3. The use of iron(II) salts yielded coordination cages in the high‐spin state at room temperature, manifesting spin‐crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X‐ray crystallography, high‐resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state‐of‐the‐art DFT calculations. A remarkably high‐spin‐stabilizing effect through encapsulation of C70 was observed. The spin‐transition temperature T 1/2 is lowered by 20 K in the host–guest complex.  相似文献   

19.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

20.
3,4‐Bis(1H‐5‐tetrazolyl)furoxan (H2BTF, 2 ) and its monoanionic salts that contain nitrogen‐rich cations were readily synthesized and fully characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analyses. Hydrazinium ( 3 ) and 4‐amino‐1,2,4‐triazolium ( 7 ) salts crystallized in the monoclinic space group P2(1)/n and have calculated densities of 1.820 and 1.764 g cm?3, respectively. The densities of the energetic salts range between 1.63 and 1.79 g cm?3, as measured by a gas pycnometer. Detonation pressures and detonation velocities were calculated to be 23.1–32.5 GPa and 7740–8790 m s?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号