首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵静  张红 《化学通报》2016,79(6):534-539
用化学氧化法制备氧化石墨烯,并用一种新型的低温化学还原方法将其还原。用红外光谱、拉曼光谱、X射线衍射、X射线光电子能谱、扫描电镜、原子力显微镜等多种手段表征氧化石墨烯和还原氧化石墨烯的结构与形貌。结果表明,即使在低温条件下,壳聚糖依然可以还原氧化石墨烯,从而预示,在低温条件下,能够在同一环境下实现氧化石墨烯的还原和石墨烯的应用。  相似文献   

2.
A new approach based on far infrared‐assisted in situ reduction was developed for the facile one‐step preparation of graphene–nickel nanoparticle hybrid by refluxing a mixture solution containing graphene oxide, nickel(II) sulfate, and hydrazine over an far‐infrared heater. The reduction time was as short as 20 min. The structure of the material was investigated by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy, vibrating sample magnetometery, and Fourier transform infrared spectroscopy. Magnetic investigations indicate that the grapheme–nickel nanoparticle hybrid exhibits ferromagnetic behavior at room temperature. Meanwhile, the hybrid was successfully employed in the enrichment and identification of proteins and peptides in combination with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry based on its excellent magnetic responsibility, high dispersibility, large surface area, and hydrophobicity, indicating great promise for a wide range of applications.  相似文献   

3.
Nickel (Ni)-lignin nanocomposites were synthesized from nickel nitrate and kraft lignin then catalytically graphitized to few-layer graphene-encapsulated nickel nanoparticles (Ni@G). Ni@G nanoparticles were used for catalytic decomposition of methane (CDM) to produce COx-free hydrogen and graphene nanoplatelets. Ni@G showed high catalytic activity for methane decomposition at temperatures of 800 to 900 °C and exhibited long-term stability of 600 min time-on-stream (TOS) without apparent deactivation. The catalytic stability may be attributed to the nickel dispersion in the Ni@G sample. During the CDM reaction process, graphene shells over Ni@G nanoparticles were cracked and peeled off the nickel cores at high temperature. Both the exposed nickel nanoparticles and the cracked graphene shells may participate the CDM reaction, making Ni@G samples highly active for CDM reaction. The vacancy defects and edges in the cracked graphene shells serve as the active sites for methane decomposition. The edges are continuously regenerated by methane molecules through CDM reaction.  相似文献   

4.
The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first‐principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.  相似文献   

5.
以氧化石墨烯(GO)为原料,N-溴代丁二酰亚胺(NBS)为溴代试剂,硫代硫酸钠为还原剂,通过羧基化、溴化和还原三步法,采用自由基反应的方式制备了溴功能化还原氧化石墨烯(rGOBr).通过X射线衍射、扫描电子显微镜、红外光谱、拉曼光谱以及X射线光电子能谱等手段对rGOBr的结构、微观形貌和元素组成进行了表征.结果表明,溴元素以共价键的形式分布在石墨烯表面.本方法原料来源广泛、操作简单且条件温和,为石墨烯的溴功能化提供了一条新途径.  相似文献   

6.
采用改进的Hummers法制备了氧化石墨烯(GO),经水合肼还原得到石墨烯(RGO),通过浸渍法制备了石墨烯负载的镍基催化剂(Ni/RGO);对其催化二氧化碳甲烷化反应的性能进行了研究,并与以碳纳米管(CNTs)和活性炭(AC)为载体负载的Ni基催化剂进行了比较.由于催化剂的载体分别为RGO,CNTs和AC,所以Ni将会表现出不同的形态.利用红外光谱(FTIR)、比表面积(BET)测试、程序升温还原(H2-TPR)、X射线衍射(XRD)分析和透射电子显微镜(TEM)等表征手段对其结构及物理性质进行了表征.结果表明,Ni/RGO具有相对较大的比表面积(316 m~2/g),Ni在Ni/RGO上的颗粒尺寸(5.3 nm)小于其在Ni/CNTs(8.9 nm)和Ni/AC(11.6 nm)上的颗粒尺寸;该催化剂在二氧化碳甲烷化反应中具有更高的催化活性和选择性,而且具有良好的使用寿命.  相似文献   

7.
以偏钨酸铵为钨源、聚乙烯吡咯烷酮为连接剂,采用浸渍提拉法制备了石墨烯-氧化钨复合薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及Raman光谱等方法对复合结构材料进行了表征,并利用光电流测试、交流阻抗谱(EIS)、瞬态光电流谱和强度调制光电流谱等方法,研究复合薄膜电极在光电作用下界面上的载流子转移过程和电荷传输行为.结果表明,组成薄膜的氧化钨纳米颗粒与石墨烯充分复合,光电性能显著提高;与石墨烯复合后,薄膜的瞬态时间常数增大,电子-空穴对寿命延长;电子传输时间减少,为纯氧化钨薄膜的47.5%.  相似文献   

8.
王丽  马俊红 《物理化学学报》2001,30(7):1267-1273
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt 制备了Pt/N-RGO纳米结构电催化剂. 采用透射电镜(TEM)、X射线光电子能谱(XPS)、X 射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能. 结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt 颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

9.
以偏钨酸铵为钨源、聚乙烯吡咯烷酮为连接剂,采用浸渍提拉法制备了石墨烯-氧化钨复合薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及Raman光谱等方法对复合结构材料进行了表征,并利用光电流测试、交流阻抗谱(EIS)、瞬态光电流谱和强度调制光电流谱等方法,研究复合薄膜电极在光电作用下界面上的载流子转移过程和电荷传输行为. 结果表明,组成薄膜的氧化钨纳米颗粒与石墨烯充分复合,光电性能显著提高;与石墨烯复合后,薄膜的瞬态时间常数增大,电子-空穴对寿命延长;电子传输时间减少,为纯氧化钨薄膜的47.5%.  相似文献   

10.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt制备了Pt/N-RGO纳米结构电催化剂.采用透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能.结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

11.
In this study, a new composite electrode of palladium (Pd) nanoparticles dispersed on polypyrrole-reduced graphene oxide (PPy-rGO) loaded on foam-nickel was achieved by galvanostatic method. Characterization of structures, morphology and crystallinity of the synthesized materials were investigated by scanning electron microscopes (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The results of XPS and XRD demonstrated Pd showed primarily as Pd0. From SEM and TEM results, we had seen that Pd nanoparticles were dispersible well on the composite electrode. Raman spectroscopy was used to show the state of graphene oxide and further demonstrated that PPy and rGO had existed of on the foam Ni matrix. The data of EIS also suggested the charge transfer of the new composite electrode decreased compared to Pd/PPy/foam-Ni and PPy/foam-Ni composite electrodes. The effect of the electropolymerization potential on Pd/PPy-rGO/foam-Ni electrode for removing triclosan (TCS) was examined. It was found that the removal efficiency of TCS on the composite electrode could reach 100% at electropolymerization potential of 0.7 V and reaction time of 100 min.  相似文献   

12.
Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.  相似文献   

13.
Self-assembly of C(60), single-walled carbon nanotubes (SWNTs) and few-layer graphene at the toluene-water interface has been investigated, starting with different concentrations of the nanocarbons in the organic phase and carrying out the assembly to different extents. Morphologies and structures of the films formed at the interface have been investigated by electron microscopy and other techniques. In the case of C(60), the films exhibit hcp and fcc structures depending on the starting concentration in the organic phase, the films being single crystalline under certain conditions. Self-assembly of the composites formed by pairs of nanocarbons (C(60)-SWNT, C(60)-few-layer graphene and SWNT-few-layer graphene) at the interface has been studied by electron microscopy. Raman spectroscopy and electronic absorption spectroscopy of the films formed at the interface have revealed the occurrence of charge-transfer interaction between SWNTs and C(60) as well as between few-layer graphene and C(60).  相似文献   

14.
氧化石墨烯的可控还原及结构表征   总被引:1,自引:0,他引:1  
采用氧化还原法, 通过控制还原时间制备了不同还原程度的石墨烯; 用红外光谱、 紫外光谱、 拉曼光谱、 X射线衍射、 热重分析、 电导率测量等多种手段系统研究了不同还原程度石墨烯的结构与性能; 采用透射电子显微镜、 扫描电子显微镜和原子力显微镜比较了氧化石墨烯和石墨烯的形貌. 结果表明, 随着还原程度的增加, 石墨烯中含氧基团减少, 紫外吸收峰逐渐红移, D带与G带的强度比增加, 热稳定性和导电性提高. 微观结构表征说明石墨烯比氧化石墨烯片的厚度增加, 褶皱增多.  相似文献   

15.
Cao H  Wu X  Yin G  Warner JH 《Inorganic chemistry》2012,51(5):2954-2960
We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.  相似文献   

16.
In this study, different types of graphene were synthesized to investigate hydrogen adsorption capacity at different pressures (0–34 bar) at room temperature (298 K). Graphene and nanoporous graphene were prepared by Chemical Vapor Deposition (CVD) method, using methane as a carbon source at a temperature of 900 °C over copper plates and nickel oxide nanocatalyst. The nickel oxide nanocatalyst was prepared by sol–gel method, whereas graphene oxide was prepared through modified Hummer's method. The products were characterized by X‐ray diffraction, field emission‐scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller and Raman spectroscopy. The adsorption of hydrogen was done by volumetric method. High adsorption capacity was achieved in nanoporous graphene because of its high pore volume (2.11 cm3/g) and large specific surface area (850 m2/g). Hydrogen adsorption values for nanoporous graphene, graphene and graphene oxide were determined as 2.56, 1.70 and 0.74 wt%, respectively. In addition, the hydrogen adsorption of graphene nanostructures fitted nicely to the selected two‐parameter and three‐parameter adsorption isotherm models. The adsorption isotherm model coefficients have been found for a 0–34 bar pressure range. The parameter values for all adsorbents showed proper conformity to the model and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
It is well-known that chemical functionalization of graphene has the great significance.We report the development of a new synthesis method of chloro-functionalized reduced graphene oxide(rGOCl).The rGOCl was prepared by radical reaction,and treatment of carboxyl graphene oxide(GOCOOH) with N-chlorosuccinimide(NCS) at 90℃ for 10 h under an atmosphere of nitrogen,using silver nitrate as catalyst.The morphologies and structures of the prepared materials were investigated by field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy and the thermal gravimetric.Results indicated that the rGOCl can be readily obtained from graphene oxide(GO) in three steps.  相似文献   

18.
本文以氧化石墨烯为前体,没食子酸为还原剂和稳定剂,通过简单的水浴加热法一步合成了还原型氧化石墨烯.利用紫外可见吸收光谱、傅里叶红外光谱、拉曼光谱、X-射线衍射及扫描电子显微镜对产物进行了一系列分析表征.结果表明,没食子酸可将氧化石墨烯还原为石墨烯.此外,还考察了制备的还原型氧化石墨烯对阴阳离子荧光官能团荧光强度的影响.结果表明,没食子酸介导合成的还原型氧化石墨烯能有效猝灭罗丹明等阳离子官能团的荧光,而增强荧光素类阴离子官能团的荧光,因此可以选择性地识别荧光官能团.  相似文献   

19.
李坤威  刘晶冰  郝欢欢  汪浩 《化学通报》2017,80(3):236-240,245
石墨烯独特的二元化电子价键结构使其在纳米电子器件中具有良好的应用发展前景。拉曼光谱作为一种灵敏、便捷的技术,已被成功地用作表征石墨烯的结构和特性。本综述着重对沉积在不同基底以及掺杂的石墨烯拉曼光谱研究做了一个简单的总结。通过对铟锡氧化物、蓝宝石和玻璃基底上的石墨烯拉曼光谱进行观察,发现在不同基底上的石墨烯拉曼G峰与2D峰峰值会有不同程度的偏移,但2D峰峰值可判断石墨烯层数这一结论仍适用。掺杂可改变石墨烯的荷电状态,使石墨烯表现出空穴(p)型或电子(n)型掺杂特性,通过石墨烯拉曼光谱的变化可以定性石墨烯的掺杂类别并定量表征石墨烯的载流子浓度。  相似文献   

20.
Density functional theory (DFT) studies of the interaction between graphene sheets and nitrile oxides have proved the feasibility of the reaction through 1,3-dipolar cycloaddition. The viability of the approach has been also confirmed experimentally through the cycloaddition of few-layer exfoliated graphene and nitrile oxides containing functional organic groups with different electronic nature. The cycloaddition reaction has been successfully achieved in one-pot from the corresponding oximes under microwave (MW) irradiation. The successful formation of the isoxazoline ring has been confirmed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号