首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of statistically evaluated experimental vertical ionization energies (IEs) for 53 medium-sized molecules (6-34 atoms) with ionization potential equation-of-motion coupled-cluster with singles and doubles (IP-EOMCCSD) computations shows that discrepancies between computed and experimental results can be accounted for with a combination of experimental and theoretical contributions. Discrepancies can be minimized by extrapolating computations to the complete basis set limit and correcting for vibrational zero-point energy (ZPE) while comparing with experimental IEs calculated as the intensity-weighted mean band position to account for band asymmetries. This procedure reduced the average discrepancy for ethylene, (E)-2-butene, 2,5-dihydrofuran, and pyrrole from 0.25 to 0.05 eV. Agreement between reported vertical IEs and computations without either making adjustments as described in this paper or using complete simulation of the ionization spectrum should be considered fortuitous. The comparisons made in this work show that estimates of vertical and adiabatic IE made using IP-EOMCCSD extrapolated to the complete basis set limit and corrected for vibrational ZPE can be used with reasonable confidence when experimental values are not available.  相似文献   

2.
BrCl紫外光电子能谱实验及理论研究   总被引:3,自引:0,他引:3  
采用紫外光电子能谱研究了影响大气臭氧浓度的重要卤素互化物一氯化溴的精细电离能谱.实验得到BrCl的第一绝热电离能和垂直电离能分别为10.95eV和11.00eV.BrCl的最高占据轨道6π电离产生了明显的旋轨分裂谱带.这对旋轨分裂谱带分别清晰地显示出4个振动精细结构峰.频率分析显示BrCl分子最高占据轨道为弱反键性质.比较了HF方法和外壳层格林函数方法(OVGF)对电离能的计算结果,并对实验值进行了分析比较及指认.采用实验构型OVGF方法给出的电离能结果无论在低电离能区还是在高电离能区都和实验值一致,特别是第一垂直电离能10.988eV与实验值11.00eV非常好地吻合.  相似文献   

3.
Ionization of nucleobases is affected by their biological environment, which includes both the effect of adjacent nucleotides as well as the presence of water around it. Guanine and its nucleotide have the lowest ionization potentials among the various DNA bases. Therefore, the threshold of ionization is dependent on that of guanine and its characterization is crucial to the prediction of interaction of light with DNA. We investigate the effect of solvation on the vertical ionization energies (VIEs) of guanine and its nucleotide. In this work, we have used hybrid quantum mechanics/molecular mechanics (QM/MM) approach with effective fragment potential as the MM method of choice and equation‐of‐motion coupled‐cluster for ionization potential with singles and doubles (EOM‐IP‐CCSD) as the QM method. The performance of the hybrid scheme with respect to the full QM method shows an accuracy of 0.02–0.04 eV. The lowest few ionizations of the nucleotide are found to be from different parts of the moiety, that is, the nucleic acid base, phosphate, or sugar, and these ionization energies are very closely spaced giving rise to a very complicated spectrum. Furthermore, microsolvation has large effects on these ionizations and can lead to red or blue shift depending on the position of the water molecule. Even a single water molecule can change the order of ionized states in the nucleotide. The VIEs of the bulk solvated chromophores are predicted and compared to existing experimental spectra. The predominant role of polarization in the solvatochromic shift is noticed. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
孙政  郑世钧  王殿勋 《化学学报》2001,59(11):2031-2033
采用紫外光电子能谱实验(PES)和量子化学方法对两种影响生态环境的亚硝基取代烷烃RONO[R=(CH3)2CH,(CH3)3CO]的电子结构进行了分析和讨论。实验得到两种化合物的第一电离能分别为10.37eV和10.12eV,结合从头算自洽场分子轨道(abinitioSCFMO)计算和外壳层格林函数法(OVGF)计算对PES进行了分析和指认。研究表明化合物中取代基效应对电离能存在明显的影响;外层格林函数法计算得到电离能与实验吻合很好;同时发现在外层格林函数计算结果中由于考虑相关能,得到的分子轨道存在能级顺序的交错。实验和理论计算结果进一步证实亚硝基取代烷烃是产生烷基氧自由基(RO^.)的很好的源物种,这为深入研究由它们产生的对环境破坏有着重要影响的相应自由基奠定了基础。  相似文献   

5.
The candidate structures for the ground-state geometry of the Al(7)M (M = Li, Cu, Ag, and Au) clusters are obtained within the spin-polarized density functional theory. Absorption energy, vertical ionization potential, vertical electron affinity, and the energy gap between the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level have been calculated to investigate the effects of doping. Doping with Ag or Au can lead to a large HOMO-LUMO gap, low electron affinity, and increased ionization potential of Al(7) cluster. In the lowest-energy structure of the Al(7)Au cluster, the Al atom binding to the Al(6)Au acts monovalent and the other six Al atoms are trivalent. Thus, the Al(7)Au cluster has 20 valence electrons, and its enhanced stability may be due to the electronic shell closure effect.  相似文献   

6.
We have synthesized a series of cyclopentadithiophene-benzochalcogenodiazole donor-acceptor (D-A) copolymers, wherein a single atom in the benzochalcogenodiazole unit is varied from sulfur to selenium to tellurium, which allows us to explicitly study sulfur to selenium to tellurium substitution in D-A copolymers for the first time. The synthesis of S- and Se-containing polymers is straightforward; however, Te-containing polymers must be prepared by postpolymerization single atom substitution. All of the polymers have the representative dual-band optical absorption profile, consisting of both a low- and high-energy optical transition. Optical spectroscopy reveals that heavy atom substitution leads to a red-shift in the low-energy transition, while the high-energy band remains relatively constant in energy. The red-shift in the low-energy transition leads to optical band gap values of 1.59, 1.46, and 1.06 eV for the S-, Se-, and Te-containing polymers, respectively. Additionally, the strength of the low-energy band decreases, while the high-energy band remains constant. These trends cannot be explained by the present D and A theory where optical properties are governed exclusively by the strength of D and A units. A series of optical spectroscopy experiments, solvatochromism studies, density functional theory (DFT) calculations, and time-dependent DFT calculations are used to understand these trends. The red-shift in low-energy absorption is likely due to both a decrease in ionization potential and an increase in bond length and decrease in acceptor aromaticity. The loss of intensity of the low-energy band is likely the result of a loss of electronegativity and the acceptor unit's ability to separate charge. Overall, in addition to the established theory that difference in electron density of the D and A units controls the band gap, single atom substitution at key positions can be used to control the band gap of D-A copolymers.  相似文献   

7.
8.
Picosecond time-resolved surface-enhanced infrared absorption spectroscopy (SEIRAS) has been used for the first time to examine the potential jump at the electrochemical interface induced by a visible pulse irradiation. The potential dependent shift of the C-O stretching vibration of CO adsorbed on a Pt electrode was utilized to monitor the potential jump. A 6-cm(-1) red-shift was observed with a time delay of approximately 200 ps with respect to a visible pump-pulse irradiation (532 nm, 35 ps duration, 3 mJ cm(-2)). The observed red-shift is ascribed to the heating of the in-plane frustrated translational mode of CO and the negative shift of potential. These two contributions can be separated with the aid of the transient of the background reflectivity of the electrode surface. The heating of water layers near the surface is mainly responsible for the potential jump through the orientation change of water molecules. This method is promising as a tool to examine ultrafast electrode dynamics.  相似文献   

9.
An ab initio investigation of the potential energy surfaces and vibrational energies and wave functions of the anion, neutral, and cation Cu(H(2)O) complexes is presented. The equilibrium geometries and harmonic frequencies of the three charge states of Cu(H(2)O) are calculated at the MP2 level of theory. CCSD(T) calculations predict a vertical electron detachment energy for the anion complex of 1.65 eV and a vertical ionization potential for the neutral complex of 6.27 eV. Potential energy surfaces are calculated for the three charge states of the copper-water complexes. These potential energy surfaces are used in variational calculations of the vibrational wave functions and energies and from these, the dissociation energies D(0) of the anion, neutral, and cation charge states of Cu(H(2)O) are predicted to be 0.39, 0.16, and 1.74 eV, respectively. In addition, the vertical excitation energies, that correspond to the 4 (2)P<--4 (2)S transition of the copper atom, and ionization potentials of the neutral Cu(H(2)O) are calculated over a range of Cu(H(2)O) configurations. In hydrogen-bonded, Cu-HOH configurations, the vertical excitation and ionization energies are blueshifted with respect to the corresponding values for atomic copper, and in Cu-OH(2) configurations where the copper atom is located near the oxygen end of water, both quantities are redshifted.  相似文献   

10.
The valence-shell vertical ionization potentials of Cl2 were calculated by perturbation corrections to the Koopmans theorem using a traditional effective core potential based on a Phillips–Kleinman derivation and an improved effective core potential obtained by Christiansen, Lee, and Pitzer. Comparison of the results with an all-electron calculation demonstrated the reliability of the Christiansen–Lee–Pitzer effective core potential, which was then used to compute the vertical ionization potentials of ClN3 and ClNCO. The results shed new light in the interpretation of the photoelectron spectra of these molecules.  相似文献   

11.
12.
Depending on the size and shape of their azulenic chromophores, azulenic bacteriorhodopsin (bR) pigment analogs can exist as either an initial pigment P1, a more red-shifted final pigment P2 or an equilibrium mixture of both. The absorption spectra of red-shifted bR analogs exhibit characteristic narrow-band shapes similar to charge fully delocalized cyanine-like dyes. Therefore, all such red-shifted pigments are believed to be highly delocalized, bond-equalized carbocations. We have determined structural requirements that facilitate their formation. To describe fully the red-shift potentials of these retinal analogs, we have introduced a new parameter-percent red-shift (PRS). A large PRS value not only reflects the extent of red-shift, but is also suggestive of extensive delocalization of the positive charge. Relevance of these findings in consideration of the possibility of forming stable O-intermediates is presented. The postulated resonance hybrid-like structures for different cations of the positively charged protonated Schiff base chromophores are in fact structurally distinct species, equilibrating in response to local perturbations within the supramolecular protein environment.  相似文献   

13.
乔志敏  曾艳丽  孙树涛  孙巧  王殿勋 《化学学报》2004,62(14):1353-1356,J005
结合紫外光电子能谱实验和量子化学计算方法研究了三氯化碘的电离能.实验得到的ICl3的紫外光电子能谱是一氯化碘和氯气的混合能谱,这表明ICl3分解为ICl和Cl2.采用B3LYlP方法在6-311 G(df)基组水平上得到了ICl3分解的过渡态.计算表明ICl3分解吸收少量热量,反应的活化能为168.4kJ/mol.采用HF方法和外壳层格林函数方法(OVGF)预测了ICl3不同轨道的电离能,OVGF方法得到的ICl3第一垂直电离能为10.372eV.  相似文献   

14.
Photoelectron spectroscopy and ab initio calculations employing a nonequilibrium polarizable continuum model were employed for determining the vertical ionization potential of aqueous protonated imidazole. The experimental value of 8.96 eV is in in excellent agreement with calculations, which also perform quantitatively for ionization of aqueous alkali cations as benchmark species. The present results show that protonation of imidazole increases its vertical ionization potential up in water by 0.7 eV, which is significantly larger than the resolution of the experiment or the error of the calculation. This combined experimental and computational approach may open the possibility for quantitatively analyzing the protonation state of histidine, of which imidazole is the titratable side chain group, in aqueous peptides and proteins.  相似文献   

15.
Chemical hardness, identified as the difference between the vertical first ionization potential I and the vertical electron affinity A, is analyzed in the context of the ionization theorems to derive expressions for its evaluation at different levels of approximation that arise as a direct consequence of the derivative discontinuity of the exchange-correlation potential. The quantities involved in these expressions incorporate indirectly the effects of the discontinuity, but their values may be calculated with any functional of the local density approximation, generalized gradient approximation, or optimized effective potential type, with or without derivative discontinuity, and with or without the correct asymptotic behavior. By comparison with the vertical energy difference values of I and A, which requires the calculation of the N-, (N-1)-, and (N+1)-electron systems, it is found, for a set of 14 closed shell molecules, that the difference between the eigenvalues of the highest occupied molecular orbitals of the N- and (N+1)-electron systems leads to rather accurate values, when the correct asymptotic behavior is incorporated, and that a second-order one-body perturbation approach that only requires information from the N-electron system leads to reasonable values.  相似文献   

16.
氯代苯阳离子的密度泛函理论研究   总被引:1,自引:0,他引:1  
采用B3LYP方法及6-311G(d,p)和6-311+G(d,p)基组,对12种氯代苯阳离子进行了理论研究,优化其电子基态的结构,计算了对应分子的垂直电离势(VIP)和绝热电离势(AIP).依据Jahn-Teller理论,确定了1,3,5-C6H3Cl3+和C6Cl6+离子分别具有C2v(2B1)和D2h(2B2g)结构(对应分子分别为D3h和D6h结构).其余10个离子的构型的对称点群与对应分子相同,但构型参数值有明显差别.用B3LYP方法计算的各氯代苯分子的垂直电离势和绝热电离势与实验值符合得很好.  相似文献   

17.
This paper explores the association of a nonionic surfactant, Igepal (polyoxyethylene nonylphenol), in aqueous media by means of absorption and fluorescence spectroscopy. The critical micellar concentration (CMC) of the aggregate formed in the aqueous medium has been determined, using three different methods: UV-visible spectroscopy, fluorescence spectroscopy, and Stokes shift. The correlation of CMC with hydrophile-lipophile balance (HLB) indicates that the CMC decreases with decreased HLB. The obtained CMC values from different methods are close to each other and have allowed the determination of DeltaG values associated with the micellization. The association constant of the dye molecule Safranine T (ST) with the nonionic micelle of Igepal, aggregation number of the surfactant monomer, and location of the fluorophore in the micellar environment have been determined. The vertical ionization potential of Igepal, electron affinity of the dye, and degree of charge transfer from the micellar aggregate to the dye molecule have been determined by AM1 calculation. The experimental charge transfer transition energies are well correlated with the determined ionization potential values (ID) of Igepal. The degree of charge transfer (ground state complexes) has been found to be low. The polarity of the micelle solubilization sites has been estimated from the solvatochromic shift, Kosowar Z value, and ET30, and ETN values.  相似文献   

18.
The many-body Green's function method is applied to the vertical ionization potential of the hydrogen molecule. The ionization potential is calculated iteratively by expanding the self-energy part up to third order. The effects of higher-order correlation corrections and nondiagonal self-energy elements on the solutions of the Dyson equation are examined with some techniques and approximations, by means of which a Koopmans' defect of 97.7% of the accurate value is obtained.  相似文献   

19.
Based on the constrained equilibrium state theory, the nonequilibrium solvation energy is derived in the framework of the continuum model. The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption. The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X? (X = Cl, Br, I, Cl2, Br2, I2) in aqueous solution. According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum, our final estimated vertical ionization energies in solution are very close to the experimental observations, while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.  相似文献   

20.
Density functional theory B3PW91/6-31+G* calculations on BenCm (n=1-10; m=1, 2, ..., to 11-n) clusters have been carried out to examine the effect of cluster size, relative composition, binding energy per atom, HOMO-LUMO gap, vertical ionization potential, and electron affinity on their relative stabilities. The most stable planar cyclic conformations of these clusters always show at least a set of two carbon atoms between two beryllium atoms, while structures where beryllium atoms cluster together, or allow the intercalation of one carbon atom between two of them, generally seem to be the least stable ones. Clusters containing 1, 2, and 3 beryllium atoms (Be2C8, Be3C6, Be2C6, BeC6, Be2C4, BeC4, Be2C2, and BeC2) are identified as clusters of "magic numbers" in terms of their high binding energy per atom, high HOMO-LUMO gap, vertical ionization potential, and second difference in energy per beryllium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号