首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The paper extends the notion of steady-state cutting of polymers with a sharp tool to scratching. The analysis assumes there is separation at the tool tip (fracture) and the removed layer undergoes plastic shear. Results are presented for three polymers: PMMA, PC and PBT. For the tougher polymer, PC, smooth scratches were obtained and the modified cutting analysis works well provided that the wear on the initially sharp tip is accounted for. For the more brittle polymers, PMMA and PBT, rougher scratches were obtained and this is consistent with the notion that the polymers exhibited micro-cracking ahead of the tool tip, which led to rough surfaces being generated. The results demonstrate that the fracture toughness and the yield stress are controlling parameters in the scratching process and that a sufficiently high value of crack opening displacement COD (greater than about 10 μm) ensures that smooth scratches are obtained, as was the case for PC.  相似文献   

2.
Random parallel nanostructures (ridges and channels) were created by scratching gold thin films deposited on glass slides. Atomic force microscope (AFM) images showed that the width of the substructures within the scratches were of the order of a few hundred nanometers. These nanometric gold features can then support localized surface plasmon resonances in the direction perpendicular to the propagation of the scratches. This surface plasmon excitation led to a remarkable dependence of the intensity of the surface-enhanced resonance Raman scattering (SERRS) on the polarization direction of the incident light relative to the orientation of the scratch. The maximum SERRS intensities for oxazine 720 (a common laser dye) adsorbed on these nanostructures were obtained when the polarization of the light field was perpendicular to the direction of the substructures. The SERRS intensities followed a squared dependence on the polarization direction of the incident field.  相似文献   

3.
Parametric studies were performed using finite element analysis (FEA) to learn how material and surface properties of polypropylene (PP) affect scratch behavior. Three-dimensional FEA modeling of scratching on a PP substrate with a spherical-tipped indenter is presented. Three different loading conditions, that is constant scratch depth, constant normal load, and linearly increasing normal load, are adopted for this parametric study. From the FEA findings, it is learned that Poisson's ratio has a negligible effect on scratch performance, whereas raising the coefficient of adhesive friction induces a significantly larger residual scratch depth and tangential force on the scratch tip. Increasing the Young's modulus of a material does not necessarily improve its overall scratch performance. On the other hand, modifying the yield stress of a material has a major impact on scratch resistance as a higher yield stress reduces the residual scratch depth. From this numerical effort, it is concluded that the yield stress and coefficient of adhesive friction are the most critical parameters to influence the scratch performance of a material. Analyses also suggest that the general trend in the parametric effect of the above four parameters on scratch behavior is independent of the applied normal load level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1435–1447, 2007  相似文献   

4.
As determined by scratch tests, self-assembled monolayers (SAMs) of octadecylphosphonic acid (OPA) on a muscovite mica substrate were found to be mechanically robust and to serve as a lubricant to protect the underlying mica substrate. For comparison purposes, three polymer films were subjected to scratch tests under the same conditions. The scratch tests were conducted using a diamond-tipped stylus, and the resultant scratches were examined using atomic force microscopy. The excellent mechanical strength of OPA SAMs is supported by analysis with time-of-flight secondary ion mass spectrometry, which suggests that the headgroup of the OPA is strongly bonded to the substrate atoms. The molecular lubrication provided by OPA SAMs suggests that the interaction between the headgroup and the substrate is sufficiently strong to endure significant shear force and that the hydrocarbon chains are able to dissipate shear energy.  相似文献   

5.
采用改进的键长涨落空穴扩散算法对平板狭缝中不对称两嵌共聚高分子熔体的微相分离进行了Monte Carlo模拟。模拟结果表明:在吸引壁条件下,靠近壁面处将形成平等于壁面的层状相;在弱吸引壁条件下,靠近壁面处将形成垂直于壁面的层状相;不对称共聚物在远离壁面处有丰富的微区形态。从结构因子上分析可知,弱吸引壁条件下不对称共聚物的结构比强吸引壁条件下更接近对称共聚物。  相似文献   

6.
Using a surface forces apparatus (SFA) and an atomic force microscope (AFM) we have studied the effects of surface roughness (root-mean-square (RMS) roughness between 0.3 and 220 nm) on the "contact mechanics", which describes the deformations and loading and unloading adhesion forces, of various polymeric surfaces. For randomly rough, moderately stiff, elastomeric surfaces, the force-distance curves on approach and separation are nearly reversible and almost perfectly exponentially repulsive, with an adhesion on separation that decreases only slightly with increasing RMS. Additionally, the magnitude of the preload force is seen to play a large role in determining the measured adhesion. The exponential repulsion likely arises from the local compressions (fine-grained nano- or submicron-scale deformations) of the surface asperities. The resulting characteristic decay lengths of the repulsion scale with the RMS roughness and correlate very well with a simple finite element method (FEM) analysis based on actual AFM topographical images of the surfaces. For "patterned" surfaces, with a nonrandom terraced structure, no similar exponential repulsion is observed, suggesting that asperity height variability or random roughness is required for the exponential behavior. However, the adhesion force or energy between two "patterned" surfaces fell off dramatically and roughly exponentially as the RMS increased, likely owing to a significant decrease in the contact area which in turn determines their adhesion. For both types of rough surfaces, random and patterned, the coarse-grained (global, meso- or macroscopic) deformations of the initially curved surfaces appear to be Hertzian.  相似文献   

7.
In this study, the irradiated ultra-high molecular weight polyethylene (UHMWPE) components doping with graphene oxide (GO) were immersed in simulated body fluid (SBF) environment at 37°C for 6 months, and their surface properties were studied by ball indentation, scratch, and wetting tests. The results show that both the irradiation cross-linking treatment and the addition of 0.5 wt % GO can increase the indentation hardness and scratching coefficient of the surface of UHMWPE composites, and wettability of it becomes better. After soaking in SBF, the ball indentation and scratch coefficient of irradiated GO/UHMWPE nanocomposites decreased by 12.4 and 10.0%, respectively. Which may due to a swelling action and the oxidative degradation occurred on the surface of GO/UHMWPE nanocomposites. However, irradiation cross-linking and filling with GO can prevent the macromolecules from penetrating into UHMWPE base material and materials, thereby reducing the rate of swelling and oxidative degradation.  相似文献   

8.
表面活性(可控)接枝聚合研究进展   总被引:3,自引:0,他引:3  
表面是材料与外界接触的窗口,材料的众多性质,如耐磨性、耐腐蚀性、生物相容性等均在很大程度上取决于表面的构成.可通过在材料表面接枝不同的聚合物链使之满足不同的需要.表面引发的活性(可控)聚合可得到分布均匀、厚度可控的接枝层,因而成为表面改性中的重要方法.本文介绍了一系列表面引发的活性(可控)聚合技术及其应用举例,对这一领域所取得的研究进展及现状作一综述.  相似文献   

9.
An original method based on atomic force microscopy (AFM) in contact mode was developed to abrade progressively the surface of tablets made of starch or gluten polymers isolated from wheat. The volume of the material removed by the tip was estimated from the analysis of successive topographic images of the surface, and the shear force was measured by keeping a constant normal force. Our data together with a simple tribological model provide clear evidence for a higher hardness and shear strength of starch compared to gluten. Gluten appears to have mechanical properties close to soft materials, such as talc, whereas starch displays higher hardness close to calcite. Our results are in a better agreement with structural properties of gluten (complex protein network) and starch (granular and semi-cristalline structure) than earlier studies by micro-indentation. This work shows that the AFM scratching method is relevant for the characterization of any polymer surface, in particular in application to materials made of different polymers at the nano-scale.  相似文献   

10.
This paper presents a new method for studying the surface of a heterogeneous solid by inverse gas chromatography at infinite dilution (IGC-ID). After saturating the high-energy sites by impregnation with a suitable polymer, the chromatographic probes visit the low energy sites, which are not visible by conventional IGC-ID. This method has been used to study the two types of surface of talc: lateral and basal surfaces. In the second part of the paper the influence of the structure of the polymer on the impregnation is examined. In particular it is shown that a polymer with a linear structure is more able to fit a rough surface than is a branched or a cyclic polymer.  相似文献   

11.
Molecular dynamics simulations were used to study the effect of periodic roughness of PE and PVC polymer surfaces on the hydrophobicity. Pillars of different lateral dimensions and heights were derived from flat crystalline surfaces, and the results of nanoscale simulations on the structured surfaces were compared with theoretical predictions of the Wenzel and Cassie equations. Hydrophobicity increased on all rough surfaces, but the increase was greater on the structured PE surfaces because of the larger water contact angle on the flat PE surface than the corresponding PVC surface. Equally sized pillar structures on the two polymers resulted in different equilibrium wetting geometries. Composite contacts were observed on rough PE surfaces, and the contact angle increased with decreasing contact area between the solid and the liquid. Opposite results were obtained for rough PVC surfaces; the contact angle increased with the solid-liquid contact area, in agreement with Wenzel's equation. However, the composite contact was observed if the energies of the wetted and composite contacts were almost equal. Good agreement was obtained between the simulated contact angles and equilibrium droplet shapes and the theories but there were also some limitations of the nanoscale simulations.  相似文献   

12.
Reverse-mode operation films can be achieved with polymer dispersed liquid crystals by many methods. One method consists in the use of either rough or polyimide treated supports in order to induce homeotropic alignment of the initial mixture that will separate in liquid crystal and polymer rich phases. The major disadvantage is the need for mesogenic monomers to keep a good alignment of the liquid crystal after the polymerization process. In this paper we present results concerning the use of an anisometric, non-mesogenic, tailor-made monomer for the preparation of excellent reverse-mode polymer dispersed liquid crystal shutters cast on rough surfaces. The combined use of rough surfaces and non-mesogenic monomers allows us to exceed earlier limits in physical and chemical properties, cost, and device dimensions by the use of a wider class of monomer molecules.  相似文献   

13.
We report an approach for the design of materials with self-repairable ultrahydrophobic properties. The materials are based on highly fluorinated crystalline fusible wax with incorporated colloidal particles. Due to the highly pronounced tendency of the wax to crystallize, the formation of blends with rough fractal surfaces was observed. In order to prove their self-repairing ability, we mechanically damaged them by scratching, which removed most of the particles from the surface. Melting of the damaged blend resulted in reorganization of the particles at the wax-air interface, restoring the initial structure and thus the ultrahydrophobic behavior.  相似文献   

14.
Novel fabrication techniques and polymer systems are being explored to enable mass production of low cost microfluidic devices. In this contribution we discuss a new fabrication scheme for making microfluidic devices containing porous polymer components in situ. Contact lithography, a living radical photopolymer (LRPP) system and salt leaching were used to fabricate multilayer microfluidic devices rapidly with various channel geometries and covalently attached porous polymer plugs made of various photopolymerizable substrates. LRPP systems offer the advantages of covalent attachment of microfluidic device layers and facile surface modification via grafting. Several applications of the porous plugs are also explored, including a static mixer, a high surface area-to-volume reactor and a rapidly responding hydrogel valve. Quantitative and qualitative data show an increase in mixing of a fluorescein and a water stream for channels containing porous plugs relative to channels with no porous plugs. Confocal laser scanning microscopy images demonstrate the ability to graft a functional material onto porous plug surfaces. A reaction was carried out on the grafted pore surfaces, which resulted in fluorescent labelling of the grafted material throughout the pores of the plug. Homogenous fluorescence throughout the depth of the porous plug and along pore surfaces indicated that the porous plugs were surface modified by grafting and that reactions can be carried out on the pore surfaces. Finally, porous hydrogel valves were fabricated which swelled in response to contact with various pH solutions. Results indicate that a porous hydrogel valve will swell and close more rapidly than other valve geometries made with the same polymer formulation. The LRPP-salt leaching method provides a means for rapidly incorporating porous polymer components into microfluidic devices, which can be utilized for a variety of pertinent applications upon appropriate selection of porous plug materials and surface treatments.  相似文献   

15.
In the present work high-heat-flux surfaces, which should serve at temperatures of up to 200 °C, were covered by electrospun polymer nanofiber mats with thicknesses of about 30 μm. Then, four different metals were electroplated on separate polymer mats, namely, copper, silver, nickel, and gold. As a result, copper-plated nanofiber mats took on an appearance resembling that of a small Australian thorny devil lizard (i.e., they became very rough on the nanoscale) and acquired a high thermal diffusivity. Silver-plated nanofiber mats also became very rough because of the dendritelike and cactuslike nanostructures on their surfaces. However, nickel-plated nanofibers were only partially rough and their mats incorporated large domains of smooth nickel-plated fibers, and gold-plated nanofibers were practically smooth. Drop impacts on the hot surfaces coated with copper-plated and silver-plated nanofibers revealed tremendously high values of heat removal rates of up to 0.6 kW/cm(2). Such high values of heat flux are more than an order of magnitude higher that the currently available ones and probably can be increased even more using the same technique. They open some intriguing perspectives for the cooling of high-heat-flux microelectronics and optoelectronics and for further miniaturization of such devices, especially for such applications as UAVs and UGVs.  相似文献   

16.
车用塑料耐刮擦测试方法概述   总被引:1,自引:0,他引:1  
耐刮擦测试是汽车内外饰塑料零件质量控制的一项重要指标。介绍了耐刮擦测试原理,刮擦头、负载、样品与刮擦头相对运动状态等是决定测试方法的关键技术要素,评价塑料耐刮擦性的方法分为目视法及仪器测量法。综述了五指刮擦法、硬度试验笔刮擦法、网格刮擦法、摩擦色牢度刮擦法及其他刮擦法测试方法,分析和总结了不同测试方法的特点和应用范围。  相似文献   

17.
赵宁  徐坚 《高分子科学》2013,31(7):1022-1028
A full-field finite element method (FEM) analysis combined with electronic speckle pattern interferometry (ESPI) measurement was developed to investigate defect evolution in polymer films. Different from the previous reports, which only compare the ESPI experimental and FEM simulated results at several points or lines, herein the full-field FEM results were exported, subtracted with a continuous distribution. By choosing proper parameters and number of substeps, the simulated and experimental results showed excellent correspondence. Furthermore, the displacement fields vertical to the tensional direction were also presented, and the strain field was preliminarily evaluated. The current method of combination of ESPI and FEM allows for capturing the experimental fringe maps to validate and optimize FEM results simulated, and would give a higher security to structural and mechanical analysis of polymeric materials.  相似文献   

18.
A new numerical approach is presented for predicting adhesion forces of particles at flat and rough surfaces. The new hybrid method uses the finite element method (FEM) for the determination of elastic and plastic particle deformation combined with numerical Hamaker summation. In the numerical approach, the influence of the plastic deformation can be fully included. We show how the adhesion force depends on the contact geometry and the material properties. For easy comparison with other models, the force-displacement behavior of the systems is presented. The numerical approach is supported by atomic force microscopy (AFM) measurements. The experimentally observed adhesion force hysteresis is described very well by the new approach. Although calculations in this article are focused on spherical particles, our approach can be extended to particles of arbitrary shapes.  相似文献   

19.
Advancements in the fabrication of microfluidic and nanofluidic devices and the study of liquids in confined geometries rely on understanding the boundary conditions for the flow of liquids at solid surfaces. Over the past ten years, a large number of research groups have turned to investigating flow boundary conditions, and the occurrence of interfacial slip has become increasingly well-accepted and understood. While the dependence of slip on surface wettability is fairly well understood, the effect of other surface modifications that affect surface roughness, structure and compliance, on interfacial slip is still under intense investigation. In this paper we review investigations published in the past ten years on boundary conditions for flow on complex surfaces, by which we mean rough and structured surfaces, surfaces decorated with chemical patterns, grafted with polymer layers, with adsorbed nanobubbles, and superhydrophobic surfaces. The review is divided in two interconnected parts, the first dedicated to physical experiments and the second to computational experiments on interfacial slip of simple (Newtonian) liquids on these complex surfaces. Our work is intended as an entry-level review for researchers moving into the field of interfacial slip, and as an indication of outstanding problems that need to be addressed for the field to reach full maturity.  相似文献   

20.
Bragg reflections of cholesteric liquid crystals at normal and oblique incidences were investigated using the finite element method (FEM). Detailed FEM derivations together with the consideration of boundary conditions are given. Two methods for achieving broadband Bragg reflection are analysed: one is to use high birefringence liquid crystal in the uniform pitch structure, the other is to use the gradient pitch structure. In each case, the number of cholesteric pitches required for establishing the Bragg reflection was simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号