首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal‐rich indides Ca2Pd2In and Ca2Pt2In were synthesised from the elements in sealed tantalum ampoules in an induction furnace. Both samples were investigated by X‐ray powder and single crystal diffraction: HT‐Pr2Co2Al type, C2/c, a = 1017.6(5), b = 574.1(3), c = 812.7(3) pm, β = 104.54(2)°, wR2 = 0.0344, 590 F2 values for Ca2Pd2In and a = 1004.3(3), b = 568.9(1), c = 813.1(2) pm, β = 104.25(2)°, wR2 = 0.0435, 654 F2 values for Ca2Pt2In with 25 variables per refinement. The structure contain Pd2 (272 pm) and Pt2 (264 pm) dumb‐bells with a trigonal prismatic coordination for each transition metal atom. These AlB2 related slabs are condensed via common edges. Together the palladium and indium atoms build up three‐dimensional [Pd2In] and [Pt2In] polyanionic networks in which the calcium atoms fill larger channels. The bonding of calcium to the network proceeds via shorter Ca–Pd and Ca–Pt contacts. Ca2Pd2In and Ca2Pt2In are Pauli paramagnets.  相似文献   

2.
The new intermetallic compound Pr6Pd13Cd4 was synthesized from the elements in a sealed tantalum ampoule in an induction furnace. Pr6Pd13Cd4 was investigated by X‐ray powder and single crystal diffraction: Na16Ba6N type, , a = 975.6(1) pm, wR2 = 0.0192, 162 F2 values and 12 variables. The striking motif of the Pr6Pd13Cd4 structure are discrete palladium centred Pr6 octahedra (296 pm Pr–Pd1) in bcc packing. The octahedra are embedded by a three‐dimensional [Pd3Cd] network with short Pd–Pd (282 pm) and Pd–Cd (274 pm) distances. The structural similarities with the subnitrides Na16Ba6N and Ag16Ca6N are discussed.  相似文献   

3.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I [`4]{\bar 4} 3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296 pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1 K.  相似文献   

4.
Well shaped single crystals of the equiatomic germanides YbPdGe and YbPtGe were synthesized from the elements using the Bridgman technique. The samples were investigated by X‐ray powder and single crystal diffraction: YbAuSn type, Imm2, a = 433.4(2), b = 2050.6(6), c = 752.6(2) pm, wR2 = 0.0723, 1551 F2 values, 58 variables for YbPdGe and TiNiSi type, Pnma, a = 686.32(9), b = 430.47(9), c = 751.02(8) pm, wR2 = 0.0543, 379 F2 values, 20 variables for YbPtGe. Both germanides crystallize with different superstructure variants of the KHg2 type, resulting from different stacking of the puckered Pd3Ge3 and Pt3Ge3 hexagons. While only Pt–Ge interactions occur in the [PtGe] polyanionic network of YbPtGe, weak interlayer Pd–Pd (297 pm) and Ge–Ge (275 pm) interactions occur in YbPdGe. The crystal chemical peculiarities are discussed in the light of the different superstructure formed.  相似文献   

5.
The four compounds Ln3Pt7Sb4 (Ln = Ce, Pr, Nd, and Sm) were prepared from the elements by arc‐melting and subsequent heat treatment in resistance and high‐frequency furnaces. The crystal structure of these isotypic compounds was determined from four‐circle X‐ray diffractometer data of Nd3Pt7Sb4 [C2/m, a = 1644.0(2) pm, b = 429.3(1) pm, c = 1030.6(1) pm, β = 128.58(1)°, Z = 2, R = 0.032 for 698 structure factors and 46 variable parameters] and Sm3Pt7Sb4 [a = 1639.5(2) pm, b = 427.1(1) pm, c = 1031.8(1) pm, β = 128.76(1)°, Z = 2, R = 0.025 for 816 F‐values and 46 variables]. The structure is isotypic with that of the homologous phosphide Er3Pd7P4. In contrast to the structure of this phosphide, where the phosphorus atoms have the coordination number nine, the larger antimony atoms of Nd3Pt7Sb4 obtain the coordination number ten. The structural relationships between the structures of EuNi2—xSb2, EuPd2Sb2, CeNi2+xSb2—x, Ce3Pd6Sb5, and Nd3Pt7Sb4, all closely related to the tetragonal BaAl4 (ThCr2Si2) type structure, are briefly discussed emphasizing their space group relationships.  相似文献   

6.
LaCoAl4 type EuIrIn4 was synthesized by induction-melting of the elements in a sealed tantalum ampoule, followed by annealing of the sample in a high-frequency or in a muffle furnace. The EuIrIn4 structure was refined from single-crystal X-ray diffraction data: Pmma, a = 860.65(3), b = 430.33(6), c = 757.65(7) pm, wR = 0.0748, 633 F2 values and 24 variables. The striking building units are iridium-centered trigonal prisms of indium atoms, distorted bcc indium cubes and a pentagonal prismatic indium coordination of the europium atoms. Within the three-dimensional [IrIn4]2– polyanionic network the Ir–In and In–In distances range from 260–288 pm and 306–332 pm, respectively. The divalent ground state of europium was manifested through magnetic [7.96(1) μB / Eu atom, TN = 7.9(1) K] and 151Eu Mössbauer spectroscopic data [δ = –10.54(2) mm · s–1; Bhf = 19.1(1) T at 6 K].  相似文献   

7.

Abstract  

The palladium-rich cadmium compounds La6Pd13Cd4 and Ce6Pd13Cd4 were synthesized by induction melting the elements in sealed tantalum ampoules and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: Na16Ba6N type, Im[`3] mIm\overline{3} m, a = 988.12(9) pm, wR2 = 0.0463, 225 F 2 values, and 12 variables for La6Pd13Cd4, and a = 982.1(2) pm, wR2 = 0.0521, 215 F 2 values, and 12 variables for Ce6Pd13Cd4. The striking structural motifs are palladium-centred La6 and Ce6 octahedra, which are packed in a bcc fashion. Further palladium and cadmium atoms built up three-dimensional [Pd3Cd] networks in which the La6Pd and Ce6Pd octahedra are embedded. Chemical bonding analyses show that the dominant interaction occurs within the palladium-centred RE 6 octahedra, while weaker bonding exists between them.  相似文献   

8.
Hydrogenation of tetragonal InPd3 in the ZrAl3 type structure (four-fold ccp superstructure) yields a hydride with a cubic AuCu3 type structure (one-fold ccp superstructure). Deuterium can be located by neutron powder diffraction in octahedral voids surrounded exclusively by palladium, [Pd6], which are 88.5(6)% occupied in a statistical manner. The resulting deuteride InPd3D0.89 thus crystallizes in a cubic anti-perovskite type structure (space group Pmm (no. 221), a=402.25(1) pm at 299(2) K). The Pd-D distance of 201.13(1) pm is typical for interstitial hydrides with palladium. Inelastic neutron scattering on the hydride InPd3H0.89, which shows a spectrum similar to that of binary palladium hydride, confirms the cubic site symmetry of hydrogen in [Pd6] interstices. This is also confirmed by the absence of any quadrupole splitting in the 2D-NMR signal of the deuteride. 1H NMR spectra of InPd3H0.89 do not show any motional narrowing. Values found for the H jump rate τ−1 in InPd3H0.89 remain below 106 s−1 in the studied temperature range 28-360 K, indicating a small hydrogen mobility in InPd3H0.8 as compared with binary palladium hydride, PdH≤1. This can be attributed to the large spatial separation of the [Pd6] sites.  相似文献   

9.
Summary. The rare earth–transition metal-indides GdPdIn, ErPdIn, YbPdIn, YPtIn, TmPtIn, Dy4Pd10In21, PrPt2In2, and Tb2Pt7In16 were prepared by arc-melting of the elements or by induction melting of the elements in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. Single crystals of Dy4Pd10In21 and Tb2Pt7In16 were grown through special annealing procedures. The indides were investigated via X-ray powder diffraction and all structures were refined from X-ray single crystal diffractometer data: ZrNiAl type, , a = 767.8(3), c = 390.7(2) pm, wR2 = 0.0722, 356 F2 values for GdPdIn; a = 766.7(3), c = 376.7(1) pm, wR2 = 0.0433, 348 F2 values for ErPdIn; a = 757.2(2), c = 393.59(8) pm, wR2 = 0.0388, 434 F2 values for YbPdIn; a = 758.2(2), c = 384.95(8) pm, wR2 = 0.0643, 353 F2 values for YPtIn; and a = 753.4(1), c = 376.71(4) pm, wR2 = 0.0844, 310 F2 values for TmPtIn, with 14 variable parameters per refinement. Dy4Pd10In21 crystallizes with the monoclinic Ho4Ni10Ga21 structure: C2/m, a = 2284.5(8), b = 441.0(2), c = 1931.4(7) pm, β = 132.74(2)°, wR2 = 0.0419, 1690 F2 values, 112 variable parameters. PrPt2In2 adopts the CePt2In2 type: P21/m, a = 1013.2(3), b = 447.2(3), c = 1019.5(3) pm, β = 116.69(2)°, wR2 = 0.0607, 1259 F2 values, 63 variable parameters. Tb2Pt7In16 is the second representative of the orthorhombic Dy2Pt7In16 type: Cmmm, a = 1211.6(2), b = 1997.1(4), c = 440.52(9) pm, wR2 = 0.0787, 1341 F2 values, 45 variable parameters. The common structural motif of the four different structure types are transition metal centered trigonal prisms formed by the rare earth metal and indium atoms. These prisms are condensed via common corners or via In–In bonds. The crystal chemistry of the four different structure types is discussed.  相似文献   

10.
The title compounds were prepared from the elemental components at high temperatures. The compounds LnOsGa3 crystallize with the cubic TmRuGa3 type structure which was refined from four‐circle X‐ray diffractometer data of TbOsGa3: Pmm, Z = 3, a = 640.8(1) pm, R = 0.014 for 173 structure factors and 10 variable parameters. The other gallides crystallize with a new structure type which was determined from single‐crystal X‐ray data of CeOsGa4: Pmma, Z = 6, a = 963.9(2) pm, b = 880.1(1) pm, c = 767.0(1) pm, R = 0.030 for 744 F values and 56 variables. The structure may be considered as consisting of two kinds of alternating layers, although bonding within and between the layers is of similar strength. One kind of layers (A) is slightly puckered, two‐dimensionally infinite, hexagonal close packed, with the composition OsGa3; the other kind of layers (B) is planar with the composition CeGa. The structure is closely related to that of Y2Co3Ga9 where the corresponding layers have the compositions Co3Ga6 (A) and Y2Ga3 (B).  相似文献   

11.
The rare earth-transition metal-indides RE 4RhIn (RE = Gd–Tm, Lu) were prepared by arc-melting of the elements and subsequent annealing. Single crystals were grown via slowly cooling of the samples. The indides were investigated via X-ray powder diffraction and several structures were refined from X-ray single crystal diffractometer data: F[`4]3mF{\bar 4}3m , a = 1370.7(9) pm, wR2 = 0.049, 428 F 2 values for Gd4RhIn, a = 1360.3(6) pm, wR2 = 0.028, 420 F 2 values for Tb4RhIn, a = 1354.5(2) pm, wR2 = 0.041, 380 F 2 values for Dy4RhIn, a = 1349.2(3) pm, wR2 = 0.029, 410 F 2 values for Ho4RhIn, a = 1342.5(5) pm, wR2 = 0.037, 403 F 2 values for Er4RhIn, a = 1337.8(3) pm, wR2 = 0.038, 394 F 2 values for Tm4RhIn with 14 variable parameters per refinement, and a = 1329.7(3) pm for Lu4RhIn. In this new structure type, the rhodium atoms have a trigonal prismatic rare earth coordination. Condensation of the RhRE 6 prisms leads to a three-dimensional network which leaves voids that are filled by regular In4 tetrahedra (317 pm In–In distance) in Gd4RhIn. The indium atoms have twelve nearest neighbors (3 In + 9 RE) in icosahedral coordination. The gadolinium atoms build up a three-dimensional, adamantane-like network of condensed, face-sharing empty octahedra.  相似文献   

12.
The title compounds were prepared by reaction of the elemental components. Of these Sc5Bi3 is a new compound. Its orthorhombic β‐Yb5Sb3 type crystal structure was determined from single‐crystal X‐ray data: Pnma, a = 1124.4(1) pm, b = 888.6(1) pm, c = 777.2(1) pm, R = 0.024 for 1140 structure factors and 44 variable parameters. For the other compounds we have established the crystal structures. ZrBi has ZrSb type structure with a noticeable homogeneity range. This structure type was also found for the low temperature (α) form of HfSb and for HfBi. For α‐HfSb this structure was refined from single‐crystal X‐ray data: Cmcm, a = 377.07(4) pm, b = 1034.7(1) pm, c = 1388.7(1) pm, R = 0.043 for 432 F values and 22 variables. HfBi2 has TiAs2 type structure: Pnnm, a = 1014.2(2) pm, b = 1563.9(3) pm, c = 396.7(1) pm. The structure was refined from single‐crystal data to a residual of R = 0.074 for 1038 F values and 40 variables. In addition, a zirconium bismuthide, possibly stabilized by light impurity elements X and crystallizing with the hexagonal Mo5Si3C1–x type structure, was observed: Zr5Bi3X1–x, a = 873.51(6) pm, c = 599.08(5) pm. The positions of the heavy atoms of this structure were refined from X‐ray powder film data. Various aspects of impurity stabilization of intermetallics are discussed.  相似文献   

13.
Summary. The rare earth-transition metal-indides RE 4RhIn (RE = Gd–Tm, Lu) were prepared by arc-melting of the elements and subsequent annealing. Single crystals were grown via slowly cooling of the samples. The indides were investigated via X-ray powder diffraction and several structures were refined from X-ray single crystal diffractometer data: , a = 1370.7(9) pm, wR2 = 0.049, 428 F 2 values for Gd4RhIn, a = 1360.3(6) pm, wR2 = 0.028, 420 F 2 values for Tb4RhIn, a = 1354.5(2) pm, wR2 = 0.041, 380 F 2 values for Dy4RhIn, a = 1349.2(3) pm, wR2 = 0.029, 410 F 2 values for Ho4RhIn, a = 1342.5(5) pm, wR2 = 0.037, 403 F 2 values for Er4RhIn, a = 1337.8(3) pm, wR2 = 0.038, 394 F 2 values for Tm4RhIn with 14 variable parameters per refinement, and a = 1329.7(3) pm for Lu4RhIn. In this new structure type, the rhodium atoms have a trigonal prismatic rare earth coordination. Condensation of the RhRE 6 prisms leads to a three-dimensional network which leaves voids that are filled by regular In4 tetrahedra (317 pm In–In distance) in Gd4RhIn. The indium atoms have twelve nearest neighbors (3 In + 9 RE) in icosahedral coordination. The gadolinium atoms build up a three-dimensional, adamantane-like network of condensed, face-sharing empty octahedra.  相似文献   

14.
Black single crystals with metallic luster of (Sr3N2/3–x)E (E = Sn, Pb) and (Sr3N)Sb were grown in lithium flux from strontium nitride, Sr2N, and tin, lead, or antimony, respectively. Nitrogen deficiency in the tin and the lead compound is a result of the higher ionic charge of the tetrelide ions E4– as compared to the antimonide ion Sb3–. In contrast to microcrystalline samples from solid state sinter reactions obtained earlier, the flux synthesis induces nitrogen order in the nitrogen deficient tetrelides. The antimony compound crystallizes as inverse cubic perovskite [a = 517.22(5) pm, Z = 1, space group Pm3 m, no. 221] with fully occupied nitrogen site, whereas the nitrogen deficient tin and lead compounds exhibit partially ordered arrangements and a certain phase width in respect to nitrogen contents. For the tetrelides, the nitrogen order leads to a cubic 2 × 2 × 2 superstructure [E = Sn: a = 1045.64(8) pm for x = 0, a = 1047.08(7) pm for x = 0.08; and E = Pb: a = 1050.7(1) pm for x = 0, space group Fm3 m, no. 225] as derived from single‐crystal X‐ray diffraction data. The metallic tetrelides show diamagnetic behavior, which is consistent with electronic structure calculations.  相似文献   

15.
In an attempt to crystallize Ce[ReO4]4 · xH2O from aqueous solutions of equimolar amounts of Ce[SO4]2 and Ba[ReO4]2 via salt‐metathesis the serendipitous formation of colorless, transparent, rod‐shaped single crystals of CaNa[ReO4]3 was observed as a result of calcium and sodium impurities within the improperly deionized water used. Structure analysis by X‐ray diffraction lead to the conclusion that the title compound crystallizes in the ThCd[MoO4]3 structure type with the hexagonal space group P63/m and the lattice parameters a = 991.74(6) pm, c = 636.53(4) pm, c/a = 0.642 for Z = 2. The crystal structure contains purely oxygen surrounded and crystallographically unique cations, namely Ca2+ in tricapped trigonal prismatic (d(Ca–O) = 6 × 249 pm + 3 × 254 pm), Na+ in octahedral (d(Na–O) = 6 × 241 pm), and Re7+ in tetrahedral coordination (d(Re–O) = 171–173 pm). Furthermore, it was possible to yield an almost phase‐pure microcrystalline powder of the title compound from a melt of equimolar amounts of Na[ReO4] and Ca[ReO4]2 stemming from aquatically obtained precursors.  相似文献   

16.
TlPd3 was synthesised from the elements in evacuated silica tubes at 600 °C. Alternatively, TlPd3 was yielded by reduction of TlPd3O4 in N2 gas atmosphere. Reduction of the oxide in H2 gas atmosphere resulted in the formation of the new hydride TlPd3H. The structure of tetragonal TlPd3 (ZrAl3 type, space group I4/mmm, a = 410.659(9) pm, c = 1530.28(4) pm) was reinvestigated by X‐ray and also by neutron powder diffraction as well as the structure of its previously unknown hydride TlPd3H (cubic anti‐perovskite type structure, space group Pm\bar{3} m, a = 406.313(1) pm). In situ DSC measurements of TlPd3 in hydrogen gas atmosphere showed a broad exothermic signal over a wide temperature range with two maxima at 280 °C and at 370 °C, which resulted in the product TlPd3H. A dependency of lattice parameters of the intermetallic phase on reaction conditions is observed and discussed. Results of hydrogenation experiments at room temperature with gas pressures up to 280 bar hydrogen and at elevated temperatures with very low hydrogen gas pressures (1–2 bar) as well as results of dehydrogenation of the hydrides under vacuum will be discussed.  相似文献   

17.
The indium-rich intermetallic compound SrIrIn6 was synthesized from the elements in a sealed tantalum ampoule at 1173 K, followed by slow cooling for crystal growth. SrIrIn6 crystallizes with a new structure type which was characterized by X-ray powder and single crystal diffraction: Pmma, a = 852.34(2), b = 434.54(5), c = 1059.18(6) pm, wR2 = 0.0178, 884 F2 values, and 32 variables. The SrIrIn6 structure shows two basic building units: (i) Ir@In9 tricapped trigonal prisms (261–292 pm Ir–In) and (ii) distorted bcc In@In8 cubes (301 to 329 pm In–In). The strontium cations fill cages within the complex three-dimensional [IrIn6] network and have coordination number 13 (Sr@In13) in form of a tricapped pentagonal prism. The SrIrIn6 structure can be described as a simple intergrowth variant of SrIrIn4 (LaCoAl4 type) with indium slabs. The crystal chemical similarities with the structures of SrIrIn4, SrIr2In8 and Eu3Ir2In15 are discussed.  相似文献   

18.
The ternary indium compounds RE4Pd10In21 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements in glassy carbon crucibles in a high‐frequency furnace. Single crystals of Sm4Pd10In21 were obtained from an indium flux. An arc‐melted precursor alloy of the starting composition ~SmPd3In6 was annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. All compounds were investigated by X‐ray powder diffraction and the structures were refined from single crystal diffractometer data. The RE4Pd10In21 indides are isotypic with Ho4Ni10Ga21, space group C2/m: a = 2314.3(2), b = 454.70(7), c = 1940.7(2) pm, β = 133.43(2)°, wR2 = 0.0681, 1678 F2 values for La4Pd10In21, a = 2308.2(1), b = 452.52(4), c = 1944.80(9) pm, β = 133.40(1)°, wR2 = 0.0659, 1684 F2 values for Ce4Pd10In21, a = 2303.8(2), b = 450.78(4), c = 1940.6(1) pm, β = 133.39(1)°, wR2 = 0.0513, 1648 F2 values for Pr4Pd10In21, a = 2300.2(2), b = 449.75(6), c = 1937.8(2) pm, β = 133.32(1)°, wR2 = 0.1086, 1506 F2 values for Nd4Pd10In21, and a = 2295.6(2), b = 447.07(4), c = 1935.7(1) pm, β = 133.16(1)°, wR2 = 0.2291, 2350 F2 values for Sm4Pd10In21, with 108 variables per refinement. All palladium atoms have a trigonal prismatic coordination. The strongest bonding interactions occur for the Pd—In and In—In contacts. The structures are composed of covalently bonded three‐dimensional [Pd10In21] networks in which the rare earth metal atoms fill distorted pentagonal channels. The crystal chemistry and chemical bonding in these indides is briefly discussed. Magnetic susceptibility measurements show diamagnetism for La4Pd10In21 and Curie‐Weiss paramagnetism for Ce4Pd10In21, Pr4Pd10In21, and Nd4Pd10In21. The neodymium compound orders antiferromagnetically at TN = 4.5(2) K and undergoes a metamagnetic transition at a critical field of 1.5(2) T. All the RE4Pd10In21 indides studied are metallic conductors.  相似文献   

19.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

20.
The nine title compounds were prepared from the elements by arc-melting and subsequent heat treatment in resistance and high-frequency furnaces. The crystal structure of these isotypic compounds was determined for YPdSi from single-crystal X-ray diffractometer data: Pmmn, a = 430.8(1) pm, b = 1391.2(1) pm, c = 743.1(1) pm, Z = 8, R = 0.024 for 417 structure factors and 40 variable parameters. The crystal structures of the isotypic compounds GdPdSi and ErPdSi were also refined from single-crystal data. The structure is of a new type. It consists of condensed, six-membered rings of alternating palladium and silicon atoms with Pd–Si bond distances varying between 249.6 and 258.8 pm. These two-dimensionally infinite nets are connected to each other via weak Pd–Si and Si–Si bonds with bond distances of 276.3 and 259.5 pm. The rare earth atoms are situated above and below the six-membered palladium-silicon rings in a manner as it is known for the aluminum atoms in the AlB2 type structure. The crystal-chemical similarities and topologies of several structures derived from the aristotype AlB2 (including those of BaPtSb, EuAuGe, KHg2, ZrBeSi, and TiNiSi) are described, emphasizing their group-subgroup relationships. The previously reported compound ”︁Er2Pd2Si”︁”︁ has the same structure as has been found here for ErPdSi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号