首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The information‐theoretic measure of confined hydrogen atom has been investigated extensively in the literature. However, most of them were focused on the ground state and accurate values of information entropies, such as Shannon entropy, for confined hydrogen are still not determined. In this work, we establish the benchmark results of the Shannon entropy for confined hydrogen atom in a spherical impenetrable sphere, in both position and momentum spaces. This is done by examining the bound state energies, the normalization of wave functions, and the scaling property with respect to isoelectronic hydrogenic ions. The angular and radial parts of Shannon entropy in two conjugate spaces are provided in detail for both free and confined hydrogen atom in ground and several excited states. The entropies in position space decrease logarithmically with decreasing the size of confinement, while those in momentum space increase logarithmically. The Shannon entropy sum, however, approaches to finite values when the confinement radius closes to zero. It is also found that the Shannon entropy sum shares same trend for states with similar density distributions. Variations of entropy for nodeless bound states are significantly distinct form those owning nodes when changing the confinement radius.  相似文献   

2.
The appearance of critical points in the Shannon entropy sum as a function of confinement radius, in ground and excited state confined hydrogenic systems, is discussed. We illustrate that the Coulomb potential in tandem with the hard sphere confinement are responsible for these points. The positions of these points are observed to vary with the intensity of the potential. The effects of the Coulomb potential on the system are further probed, by examining the differences between the densities of the confined atom and those of the particle confined in a spherical box, for the same confinement radius. These differences are quantified by using Kullback-Leibler and cumulative residual Kullback-Leibler distance measures from information theory. These measures detect that the effects of the Coulomb potential are squeezed out of the system as the confinement radius decreases. That is, the confined atom densities resemble the particle in a box ones, for smaller confinement radii. Furthermore, the critical points in the entropy sum lie in the same regions where there are changes in the distance measures, as the atom behaves more particle in a spherical box-like. The analysis is further complemented by examination of the derivative of the entropy sum with respect to confinement radius. This study illustrates the inhomogeneity in the magnitudes of the derivatives of the entropy sum components and their dependence on the Coulomb potential. A link between the derivative and the entropic force is also illustrated and discussed. Similar behaviors are observed when the virial ratio is compared to the entropic power one, as a function of confinement radius.  相似文献   

3.
The position and momentum spreading of the electron distribution of the two-dimensional confined hydrogenic atom, which is a basic prototype of the general multidimensional confined quantum systems, is numerically studied in terms of the confinement radius for the 1s, 2s, 2p, and 3d quantum states by means of the main entropy and complexity information-theoretical measures. First, the Shannon entropy and the Fisher information, as well as the associated uncertainty relations, are computed and discussed. Then, the Fisher-Shannon, lopezruiz-mancini-alvet, and LMC-Rényi complexity measures are examined and mutually compared. We have found that these entropy and complexity quantities reflect the rich properties of the electron confinement extent in the two conjugated spaces.  相似文献   

4.
The Shannon information entropy of 1-normalized electron density in position and momentum space Sr and Sp, and the sum ST, respectively, are reported for the ground-state H, He+, Li2+, H-, He, Li+, Li, and B atoms confined inside an impenetrable spherical boundary defined by radius R. We find new characteristic features in ST denoted by well-defined minimum and maximum as a function of confinement. The results are analyzed in the background of the irreducible lower bound stipulated by the entropy uncertainty principle [I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975)]. The spherical confinement model leads to the ST values which satisfy the lower bound up to the limits of extreme confinements with the interesting new result displaying regions over which a set of upper and lower bounds to the information entropy sum can be locally prescribed. Similar calculations on the H atom in 2s excited states are presented and their novel characteristics are discussed.  相似文献   

5.
We investigate the relations between the enzyme kinetic flexibility, the rate of entropy production, and the Shannon information entropy in a steady-state enzyme reaction. All these quantities are maximized with respect to enzyme rate constants. We show that the steady-state, which is characterized by the most flexible enzymatic transitions between the enzyme conformational states, coincides with the global maxima of the Shannon information entropy and the rate of entropy production. This steady-state of an enzyme is referred to as globally optimal. This theoretical approach is then used for the analysis of the kinetic and the thermodynamic performance of the enzyme triose-phosphate isomerase. The analysis reveals that there exist well-defined maxima of the kinetic flexibility, the rate of entropy production, and the Shannon information entropy with respect to any arbitrarily chosen rate constant of the enzyme and that these maxima, calculated from the measured kinetic rate constants for the triose-phosphate isomerase are lower, however of the same order of magnitude, as the maxima of the globally optimal state of the enzyme. This suggests that the triose-phosphate isomerase could be a well, but not fully evolved enzyme, as it was previously claimed. Herein presented theoretical investigations also provide clear evidence that the flexibility of enzymatic transitions between the enzyme conformational states is a requirement for the maximal Shannon information entropy and the maximal rate of entropy production.  相似文献   

6.
7.
Entropic uncertainty and statistical correlation measures, based on survival and cumulative densities, are explored in some representative quantum systems. We illustrate how the cumulative residual entropy in the quantum well system recovers the correct classical behavior for larger quantum numbers while the Shannon entropy does not. Two interacting and noninteracting oscillators are used to examine two‐particle entropies and their related correlation measures. The joint cumulative residual entropy does distinguish between symmetric and antisymmetric wave functions in interacting systems as the interaction is turned on. The joint Shannon entropy does not distinguish between the symmetries even in the presence of interaction. Conversely, the joint Shannon entropy and joint cumulative residual entropy are both unable to distinguish between the symmetries for certain states of the noninteracting oscillators. As measures of statistical correlation, the mutual information and the cross cumulative residual entropy yield similar behaviors as a function of the strength of the interparticle interaction.  相似文献   

8.
The localization–delocalization of a particle in a cyclic box is studied by examination of its Shannon information entropy and standard deviation. These results are compared to the particle in a box model, in ground and also in excited states. We show how a cyclic symmetry imposes that the ground state is more delocalized in the cyclic box as compared to the particle in a box. However, excited states in both models exhibit the same localization. The differences between the Shannon entropy and the standard deviation are discussed and the analysis is then extended to consider multiple particles in both models.  相似文献   

9.
A new method to determine electron correlation energy is presented for atoms and molecules. This method is based on Shannon information entropy that is obtained by fractional occupation probabilities of natural atomic orbitals. It is indicated that the Shannon entropy increases as the number of electrons increases and thus can be considered as a possible measure for the electron correlation in atomic and molecular systems. For neutral atoms and singly charged positive ions we proposed an expression for correlation energy with explicit dependence on the Shannon entropy and atomic number. The obtained correlation energies have been used to compute the first ionization potentials of the ground state of the main group elements from hydrogen through krypton. The calculated ionization potentials are in reasonably good agreement with their corresponding experimental values.We also developed the additivity scheme to find a connection between Shannon entropy and molecular correlation energy. The estimated molecular correlation energies show an excellent agreement with those obtained by elaborate G3 method with R2 = 0.990.  相似文献   

10.
In this research work, the quantum information‐theoretic analysis of the static screened Coulomb potential has been carried out by studying both analytically and numerically the entropic measures, Fisher information as well as the Onicescu information energy of its wave function. Explicit expressions of these information‐theoretic measures were obtained. Using the Srivastava–Daoust linearization formula in terms of the multivariate Lauricella hypergeometric function, the Rényi entropy, Tsallis entropy, Onicescu information energy were analytically obtained. From the results obtained, it is observed that some of the Shannon entropies are negative, indicating that, negative entropies exists for the probability densities that are highly localized. The trends in the variation of the information‐theoretic measures with the potential screening parameter a for this atomic model are discussed. The Bialynicki‐Birula, Mycielski inequality (BBM), and the Fisher information based uncertainty relation are also verified.  相似文献   

11.
The Shannon entropy (S) and the Fisher Information (I) entropies are investigated for a generalized hyperbolic potential in position and momentum spaces. First, the Schrodinger equation is solved exactly using the Nikiforov-Uvarov-Functional Analysis method to obtain the energy spectra and the corresponding wave function. By Fourier transforming the position space wave function, the corresponding momentum wave function was obtained for the low-lying states corresponding to the ground and first excited states. The positions and momentum of Shannon entropy and Fisher Information entropies were calculated numerically. Finally, the Bialynicki-Birula and Mycielski and the Stam-Cramer-Rao inequalities for the Shannon entropy and Fisher Information entropies, respectively, were tested and were found to be satisfied for all cases considered.  相似文献   

12.
A weakly charged flexible polyelectrolyte chain in a neutral spherical cavity is analyzed by using self-consistent field theory within an explicit solvent model. Assuming the radial symmetry for the system, it is found that the confinement of the chain leads to creation of a charge density wave along with the development of a potential difference across the center of cavity and the surface. We show that the solvent entropy plays an important role in the free energy of the confined system. For a given radius of the spherical cavity and fixed charge density along the backbone of the chain, solvent and small ion entropies dominate over all other contributions when chain lengths are small. However, with the increase in chain length, chain conformational entropy and polymer-solvent interaction energy also become important. Our calculations reveal that energy due to electrostatic interactions plays a minor role in the free energy. Furthermore, we show that the total free energy under spherical confinement is not extensive in the number of monomers. Results for the osmotic pressure and mean activity coefficient for monovalent salt are presented. We demonstrate that fluctuations at one-loop level lower the free energy and corrections to the osmotic pressure and mean activity coefficient of the salt are discussed. Finite size corrections are shown to widen the range of validity of the fluctuation analysis.  相似文献   

13.
Multiconfigurational second-order perturbation theory has been employed to calculate two-dimensional potential energy surfaces for the lowest low-lying singlet electronic states of CH2BrCl as a function of the two carbon-halogen bonds. The photochemistry of the system is controlled by a nonadiabatic crossing occurring between the A and B bands, attributed to the b1A' and c1A' states, which are found almost degenerate and forming a near-degeneracy line of almost equidistant C-Br and C-Cl bonds. A crossing point in the near-degeneracy line is identified as a conical intersection in this reduced two-dimensional space. The positions of the conical intersection located at CASSCF, single-state (SS)-CASPT2, and multistate (MS)-CASPT2 levels of theory are compared, also paying attention to the nonorthogonality problem of perturbative approaches. To validate the presence of the conical intersection versus an avoided crossing, the geometrical phase effect has been checked using the multiconfigurational MS-CASPT2 wave function.  相似文献   

14.
The authors present diabatic and adiabatic potential energy surfaces for the three lowest electronic singlet states of H3+. The modeling of the surfaces is based on the multi-sheeted double many-body expansion method which consists of dressing the various matrix elements of the diatomics-in-molecules potential matrix with three-body terms. The avoided crossing between the two lowest states and the conical intersection between the second and the third state are accurately represented by construction.  相似文献   

15.
The ionization of the hydrogen atom confined in a spherical potential well and subjected to a static electric field is studied, using the diffusion Monte Carlo (DMC) method. Atomic ionization within a potential well is found to be a stationary, gradual, and reversible process. The value of the electric field at the onset of ionization is of the order of 0.1 atomic units, and depends on the symmetry of the atomic wave function and on the confinement dimension. By decreasing the confinement sphere, the difference between the bound and ionized states disappears, showing that strict confinement leads to pressure ionization of the atom. The off-center case is studied characterizing the potential energy surface (PES), and the transition between field-induced and pressure-induced ionization is confirmed. Except for very weak fields, the minimum of the PES is reached when the proton is in contact with the boundary of the well.  相似文献   

16.
Stochastic fluctuation of barrier height and width of a symmetric double well plays a very significant role in the corresponding dynamics by increasing the semiclassical transmission probability and Shannon entropy of the system. The population of the system has been observed to be spread into several under barrier states starting from the or [, where and are the wave functions describing the two lowest degenerate states] in presence of the stochastic fluctuation. This distribution over several states is manifested by steady increase in Shannon entropy. However, any arbitrary value of the stochastic fluctuation cannot increase the populations of the upper energy states and consequently no gain in the net value of Shannon entropy results. There is an optimum frequency for which the Shannon entropy passes through a maximum, which is also found out in this work. We have also calculated the semiclassical WKB like transmission probability as a function of time and it is clear that the random fluctuation of barrier causes the transmission probability to increase to a significant amount. As the total energy of the system remains below the potential barrier, this transmission probability is equivalent to tunneling probability. It has been clearly shown that if the fluctuation is made to be periodic (without changing the frequency and magnitude of the fluctuation) it cannot effect any significant change in the overall dynamics.  相似文献   

17.
An analytical relationship between the densities of the Shannon entropy and Fisher information for atomic and molecular systems has been established in this work. Two equivalent forms of the Fisher information density are introduced as well. It is found that for electron densities of atoms and molecules the Shannon entropy density is intrinsically related to the electron density and the two forms of the Fisher information density. The formulas have been confirmed by the numerical results for the first two-row atoms.  相似文献   

18.
19.
根据密度泛函理论,分子的电子密度确定了该体系基态下的所有性质,其中包括结构和反应活性.如何运用电子密度泛函有效地预测分子反应活性仍然是一个有待解决的难题.密度泛函活性理论(DFRT)倾力打造这样一个理论和概念架构,使得运用电子密度以及相关变量准确地预测分子的反应特性成为可能.信息理论方法的香农熵和费舍尔信息就是这样的密度泛函,研究表明,它们均可作为反应活性的有效描述符.本文将在DFRT框架中介绍和引进三个密切相关的描述符, Rényi熵、Tsallis熵和Onicescu信息能.我们准确地计算了它们在一些中性原子和分子中的数值并讨论了它们随电子数量和电子总能量的变化规律.此外,以第二阶Onicescu信息能为例,在分子和分子中的原子两个层面上,系统地考察了其随乙烷二面角旋转的变化模式.这些新慨念的引入将为我们深入洞察和预测分子的结构和反应活性提供额外的描述工具.  相似文献   

20.
A series of spin-orbit configuration interaction calculations has been carried out for the BiSe and BiTe molecules and analyzed in comparison with data obtained earlier for the isovalent BiO and BiS systems. An avoided crossing caused by the spin-orbit interaction between the X2Pi and A4Pi electronic states is shown to have a decisive effect on the lower-energy spectrum in each case. Irregularities in the X2 3/2 state vibrational manifold occur as a consequence of this nonadiabatic interaction, and the v vibrational number for the onset of these perturbations is found to gradually decrease in going from BiO to BiSe, in agreement with experiment. In BiTe the shape of the X2 potential curve is so altered by the avoided crossing that its minimum becomes shifted to a significantly larger distance than for the X1 state, unlike the case for BiSe or the lighter Bi chalcogenides. This characteristic appears to be the root cause for the fact that the X2 state has not yet been found experimentally in the BiTe spectrum, despite careful searches in the expected energy range. Radiative lifetimes have also been calculated for the low-lying states of both the BiSe and BiTe molecules, and these results are found to be consistent with experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号