首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need for reliable surface analyses together with quality‐management requirements for analytical laboratories led the International Organization for Standardization (ISO) to form its Technical Committee (TC) 201 on Surface Chemical Analysis in 1991. This article describes the organization of TC 201, the strategies that have been found useful for identifying and assessing possible projects for new international standards, and the 57 international standards and other documents prepared to date by TC 201. Standards have now been developed for Auger‐electron spectroscopy, glow‐discharge spectroscopy, various types of scanning probe microscopy, secondary‐ion mass spectrometry, sputter‐depth profiling, total‐reflection X‐ray fluorescence spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray reflectometry. In addition, standards have been developed with definitions of terms used in surface chemical analysis; the handling, preparation of specimens for surface analysis; information and data‐transfer formats; and methods for determining the lateral resolution of beam‐based methods of surface analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An international round‐robin test (RRT) was performed to investigate a method to determine the interface location and the layer thickness of multilayer films by secondary ion mass spectrometry (SIMS) depth profiling as a preliminary study to develop a new work item proposal in ISO/TC‐201. Two types of reference materials were used in this RRT. A SiGe alloy (Si52.4Ge47.6) reference film was used to determine the relative sensitivity factors of Si and Ge. A Si/Ge multilayer reference film was used to determine the relative sputtering rates of the Si and Ge layers. The layer thicknesses were measured from the interfaces determined by a 50 atomic percent definition. Seven laboratories from 5 countries participated in this international RRT. The RRT reference expanded uncertainties for Si and Ge layers in a Si/Ge multilayer with similar thicknesses as the reference film were 0.76 and 1.17 nm, respectively. However, those in a thinner Si/Ge multilayer film were slightly larger at 1.04 and 1.59 nm, respectively. Most of the thickness ratios in the 2 Si/Ge multilayer films were consistent with the RRT reference value within their expanded uncertainties.  相似文献   

3.
2-Chloroethylethyl sulfide (CEES) is used as a simulant for mustard (HD) in a study to develop secondary ion mass spectrometry (SIMS) for rapid, semi-quantitative detection of mustard on soil. Selectivity and sensitivity are markedly improved employing multiple-stage mass spectrometry (MS(n)) using an ion trap SIMS. C(2)H(5)SC(2)H(4)(+) from CEES eliminates C(2)H(4) and H(2)S, which are highly diagnostic. CEES was detectable at 0.0012 monolayer on soil. This corresponds to approximately 15 ppm (mass/mass) for a soil having a surface area of 12 m(2) g(-1). A single analysis could be conducted using only 2 mg of soil in under 5 min.  相似文献   

4.
Round-robin characterization is reported on the sputter depth profiling of CrN/AlN multilayer thin-film coatings on nickel alloy by secondary ion mass spectrometry (SIMS) and glow-discharge optical emission spectrometry (GD-OES). It is demonstrated that a CAMECA SIMS 4550 Depth Profiler operated with 3 keV O2+ primary ions provides the best depth resolution and sensitivity. The key factor is sample rotation, which suppresses the negative influence of the surface topography (initial and ion-induced) on the depth profile characteristics.  相似文献   

5.
Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.  相似文献   

6.
Imaging mass spectrometry provides both chemical information and the spatial distribution of each analyte detected. Here it is demonstrated how imaging mass spectrometry of tissue at subcellular resolution can be achieved by combining the high spatial resolution of secondary ion mass spectrometry (SIMS) with the sample preparation protocols of matrix-assisted laser desorption/ionization (MALDI). Despite mechanistic differences and sampling 10(5) times less material, matrix-enhanced (ME)-SIMS of tissue samples yields similar results to MALDI (up to m/z 2500), in agreement with previous studies on standard compounds. In this regard ME-SIMS represents an attractive alternative to polyatomic primary ions for increasing the molecular ion yield. ME-SIMS of whole organs and thin sections of the cerebral ganglia of Lymnaea stagnalis demonstrate the advantages of ME-SIMS for chemical imaging mass spectrometry. Subcellular distributions of cellular analytes are clearly obtained, and the matrix provides an in situ height map of the tissue, allowing the user to identify rapidly regions prone to topographical artifacts and to deconvolute topographical losses in mass resolution and signal-to-noise ratio.  相似文献   

7.
Secondary-ion mass spectrometry (SIMS) is used to sputter ions directly from thin-layr chromatograms in which components in a mixture have been separated. Mixtures of phenothiazine drugs and small peptides have been separated an detected by the chromatography/SIMS method. Phosphonium salts have been separated by thin-layer chromatography and imaged in situ by mass spectrometer. Organometallic compounds such as the transition metral acetylacetonates have been simialry determined. Mixtures that have been separated by gel electrophoresis are transferred by using a standard blotting procedure to a nitrocellulose support, which is then examined by secondary-ion mass spectrometry. A mixture of organic dyes was separated by gel electrophoresis, and characterized by secondary-ion mass spectrometry. The use of the mass spectral information to deconvolute overlapping components on the chromatogram is discussed, and the ultimate spatial resolution for molecular mapping is estimated as about 1 μm.  相似文献   

8.
13C labeling is introduced as an alternative to deuterium labeling for analysis of organic materials using secondary ion mass spectrometry (SIMS). A model macromolecular system composed of polystyrene (PS) and poly(methyl methacrylate) (PMMA) was used to compare the effects of isotopic labeling using both deuterium substitution (dPS) and 13C labeling (13C-PS). Clear evidence is shown that deuterium labeling does introduce changes in the thermodynamic properties of the system, with the observation of segregation of dPS to an hPS:dPS/hPMMA interface. This type of behavior could significantly impact many types of investigations due to the potential for improper interpretation of experimental results as a consequence of labeling-induced artifacts. 13C labeling is shown to provide a true tracer for analysis using SIMS.  相似文献   

9.
We study the deconvolution of the secondary ion mass spectrometry (SIMS) depth profiles of silicon and gallium arsenide structures with doped thin layers. Special attention is paid to allowance for the instrumental shift of experimental SIMS depth profiles. This effect is taken into account by using Hofmann's mixing‐roughness‐information depth model to determine the depth resolution function. The ill‐posed inverse problem is solved in the Fourier space using the Tikhonov regularization method. The proposed deconvolution algorithm has been tested on various simulated and real structures. It is shown that the algorithm can improve the SIMS depth profiling relevancy and depth resolution. The implemented shift allowance method avoids significant systematic errors of determination of the near‐surface delta‐doped layer position. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Lipids have diverse functions in the nervous system, but the study of their anatomical distributions in the intact brain is rather difficult using conventional methodologies. Here we demonstrate the application of high resolution time-of-flight (ToF) secondary ion mass spectrometry (SIMS) to image various lipid components and cholesterol across an entire brain section prepared from an adult zebra finch (Taeniopygia guttata), with a spatial resolution of 2.3 μm, resulting in the formation of 11.5 megapixel chemical images. The zebra finch is a songbird in which specific neural and developmental functions have been ascribed to discrete “song control nuclei” of the forebrain. We have observed a relative increase of palmitic acid C16:0 and oleic acid C18:1 in song control nuclei versus the surrounding tissue, while phosphate (PO3), representative of phospholipids, was lower in these regions. Cholesterol was present at a high level only in the white matter of the optic tectum. More diffuse distributions were observed for stearic, arachidonic, linolenic, and palmitoleic acids. The presented results illustrate that SIMS imaging is a useful approach for assessing changes in lipid content during song circuit development and song learning.  相似文献   

11.
The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.  相似文献   

12.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   

13.

Rationale

Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.

Methods

Following cryo‐sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF‐SIMS. The same section was then coated with a para‐nitroaniline matrix and images were acquired using AP‐MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor‐independent imzML file format and processed with the open‐source software MSiReader.

Results

The TOF‐SIMS and AP‐MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF‐SIMS in negative ion mode and the phosphatidylcholine ions detected with AP‐MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.

Conclusions

This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
  相似文献   

14.
二次离子质谱作为目前空间分辨率最高的质谱成像技术,以其免标记、高灵敏、多组分检测优势和亚微米级高空间分辨成像优势为诸多生命科学问题的研究提供了全新的分析手段,在基础细胞生物学、组织生理病理学、生物医药与临床医学等领域的研究中得到了广泛应用.本文综述了二次离子质谱在生物组织、细胞、仿生生物膜等体系中的质谱成像研究进展.  相似文献   

15.
To expand the role of high spatial resolution secondary ion mass spectrometry (SIMS) in biological studies, numerous developments have been reported in recent years for enhancing the molecular ion yield of high mass molecules. These include both surface modification, including matrix-enhanced SIMS and metal-assisted SIMS, and polyatomic primary ions. Using rat brain tissue sections and a bismuth primary ion gun able to produce atomic and polyatomic primary ions, we report here how the sensitivity enhancements provided by these developments are additive. Combined surface modification and polyatomic primary ions provided approximately 15.8 times more signal than using atomic primary ions on the raw sample, whereas surface modification and polyatomic primary ions yield approximately 3.8 and approximately 8.4 times more signal. This higher sensitivity is used to generate chemically specific images of higher mass biomolecules using a single molecular ion peak.  相似文献   

16.
The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF‐IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain δ18O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life‐stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF‐IRMS although the δ18O values and analytical precisions (~0.2‰) of the two methods were comparable. In addition, SIMS δ18O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The number of volatile organic compounds (VOCs) that can be purged from human blood is so great that they cannot be separated completely by capillary gas chromatography. As a result, the single-mass chromatograms used for quantitating the target compounds by mass spectrometry have many interferences at nominal (integer) mass resolution of a quadrupole mass spectrometer. The results of these interferences range from small errors in quantitation to completely erroneous results for the target VOCs. By using a magnetic sector mass spectrometer, these interferences at nominal mass can be removed at higher resolution by lowering the ion chromatogram windows around the masses of interest. At 3000 resolution (10% valley definition), unique single-ion chromatograms can be made for the quantitation ions of the target VOCs. Full-scan mass data are required to allow the identification of unknown compounds purged from the blood. By using isotope-dilution mass spectrometry, most target VOCs can be detected in the low parts per trillion range for a 10-mL quantity of blood from which the VOCs have been removed by a purge-and-trap method.  相似文献   

18.
Round-robin characterization is reported on the sputter depth profiling of CrN/AlN multilayer thin-film coatings on nickel alloy by secondary ion mass spectrometry (SIMS) and glow-discharge optical emission spectrometry (GD-OES). It is demonstrated that a CAMECA SIMS 4550 Depth Profiler operated with 3 keV O 2 + primary ions provides the best depth resolution and sensitivity. The key factor is sample rotation, which suppresses the negative influence of the surface topography (initial and ion-induced) on the depth profile characteristics.  相似文献   

19.
A method employing liquid secondary-ion mass spectrometry (SIMS) in conjunction with metastable-ion measurements (linked scanning at constant B/E) to obtain sequence-specific information for three synthetic polyamine isomers was developed. The normal liquid SIMS spectra gave molecular weight information, but important sequence ions were of low intensity or obscured by the background. The metastable-ion spectra contained important fragment ions in particular due to cleavage along the polyamine chain. One of the three synthetic isomers was identical with a toxin present in the venom of the digger wasp. In conjunction with nuclear magnetic resonance spectroscopic studies, this should be a powerful method for the structural characterization of other closely related toxins present in the venom of this wasp.  相似文献   

20.
The results of fast atom bombardment (FAB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), matrix-assisted laser desorption/ionization (MALD/I), electrospray ionization (ESI), and field desorption (FD) analyses of ethoxylated oligomers of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104) were compared.Each of these desorption mass spectrometry (MS) techniques can produce spectra of unfragmented cationized oligomers. From the observed ion series we calculate average molecular weight information. We have compared the results of mass spectrometric analyses of a series of ethoxylated Surfynol surfactants. Our data indicate that FAB, ToF-SIMS, MALDI/I, and ESI produce similar results for the lower molecular weight species, but that as the average molecular weight increases FAB and SIMS produce slightly lower results than MALD/I and FD. This could be due to increased fragmentation. ESI produced a result similar to FAB and SIMS for the highest average molecular weight material. Further experiments compare the mass spectral results with gas chromatographic quantitative data. Although gas chromatography is not expected to accurately analyze the higher mass oligomers, we observe significant differences in intensities of the short-chain oligomers (especially the 0- and 1-mers) when compared to the desorption mass spectrometer results. These differences may reflect poor cationization efficiency for very short oligomer chains in the mass spectrometric analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号