首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(6):1706-1717
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films were prepared using melt blending and blowing films technique in the presence of chain extender‐Joncryl ADR 4370F. The ADR contains epoxy functional groups and used as a compatibilizer. The morphological, mechanical, rheological, thermal, and crystalline properties of the PLA/PBAT/ADR blown films were studied. Scanning electron microscopy micrographs of the films revealed more ductile deformation with increasing PBAT content. The addition of PBAT enhanced the toughness of the PLA film. Tensile tests indicated that the elongation at break increased from 20.5% to 334.6% in the machine direction and from 7.1% to 715.9% in the transverse direction. The Young modulus increased from 2690.5 to 395.6 MPa in the machine direction and from 2623.5 to 154.0 MPa in the transverse direction. The sealing strength of 40/60/0.15 PLA/PBAT/ADR film was the highest among all the samples up to 9.4 N 15 mm−1. These findings gave important implications for designing and manufacturing polymer packaging materials.  相似文献   

2.
As a result of environmental concern, there is an increasing interest in the development of biodegradable polymers for packaging with suitable properties, as an alternative to the synthetic petroleum‐based polymers. However, such biodegradable polymers are prevented for use in wide industrial and commercial packaging because of their limited gas and vapor barrier properties. This obstacle urges innovative strategies to achieve enhanced gas barrier properties using “bio‐layering” technologies. Whey protein isolate (WPI), a by‐product of the cheese industry, has quite promising properties for packaging purposes. It possesses good oxygen, aroma, and oil barrier properties; however, its permeability to water vapor is high. In this study, several WPI coatings were obtained, adding polyvinyl alcohol and pectin to improve the coated film properties; in addition, nanoclays were used to improve water vapor barrier properties. Comparison of neat poly (lactic acid) film versus poly (lactic acid) coated with WPI presented advantage of the later: improvement of about 90% in the oxygen barrier properties and about 27% in the water vapor barrier properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
李武 《高分子科学》2017,35(5):659-671
Polypropylene(PP) composites containing magnesium oxysulfate whisker(MOSw) or lauric acid(LA) modified MOSw(LAMOSw) were prepared via melt mixing in a torque rheometer. The heterogeneous nucleating effect of LAMOSw was clearly observed in polarized light microscopy(PLM) pictures with the presence of an abundance of small spherulites. MOSw exhibited no nucleation effect and formed a few spherulites with large size. Compared with PP/MOSw composites, PP/LAMOSw exhibited better impact strength, tensile strength and nominal strain at break, ascribing to three possible reasons:(i) more β-crystal PP formed,(ii) better dispersity of LAMOSw in PP matrix and(iii) the plasticizing effect of LA. The results of dynamic mechanical thermal analysis(DMTA) indicated that brittleness of the PP matrix at low temperature was improved by the addition of LAMOSw, while the interfacial interactions between MOSw and PP matrix were actually weakened by LA, as evidenced by the higher tanδ values over the entire range of test temperatures. In terms of the rheological properties of the composites, both the η* and G′ at low frequencies increase with the addition of MOSw or LAMOSw, indicating that the PP matrix was transformed from liquid-like to solid-like. However, a network of whiskers did not form because no plateau was found in the G′ at low frequencies. With low filler content, LAMOSw produced a stronger solid-like behavior than MOSw mainly due to the better dispersion of the LAMOSw in PP matrix. However, for highly-filled composites, the η* of PP/LAMOSw at low frequencies was smaller than that of PP/MOSw composite, since the particleparticle contact effect played a major role.  相似文献   

4.
The effect of cross-link density on the morphology and properties of two flexible molded foam samples was studied. Film samples based on the same foam formulations were also fabricated to study the feasibility of using them for the characterization of complex foam products. Fourier transform infrared spectroscopy (FTIR) and small angle X-ray scattering (SAXS) data show that films and foam samples have entirely different hard domain ordering. The results of the study of morphology indicate that an increase in cross-link density appears to increases phase mixing in film and foam samples. Differential scanning calorimetry (DSC) studies indicate that the soft segment glass transition temperature (Tg) is independent of cross-link density (at levels studied). But for both film and foam samples, morphology clearly dicates the manner in which moisture interacts with the hard domains. Results of the stress-strain behavior indicate that an increase in cross-link density increases the modulus and decreases the elongation at break. Mooney-Rivilin modeling of the stress-elongation behavior of film shows that the higher cross-link density sample gives more nonaffine behavior, possibly due to a heterogeneous distribution of hard domains. Similar modeling of the foams was not possible because of their linear stress response to surprisingly high elongation. The results of the power law modeling of stress relaxation response indicates that with an increase in cross-link density (covalent and virtual), the power law exponent decreases as expected. At levels of cross-linking and hard segment content studied, stroke-controlled equilibrium hysteresis was independent of cross-link density. Normalized dynamic mechanical spectra (DMS) show that the film samples have higher rubbery plateau modulus. The magnitude of the area under the tan δ curve at Tg indicates greater flexibility of polymer segments in foam sample. Structure-property relationships of cellular materials can be established by characterizing film samples because a parallel trend exists between each group. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Polystyrene nanoparticles (nPS) in the range of 10–100 nm with spherical shape were synthesized by oil/water (o/w) microemulsion process. In this process ammonium persulfate (APS) as an initiator, sodium dodecyl sulphate as a surfactant and n‐pentanol as cosurfactant were used. Isolated nPS was characterized by FTIR and 1H NMR spectroscopy. DSC studies of nPS showed higher Tg as compared to bulk PS. The effect of lower weight percentage (wt%) of nPS on the mechanical, rheological, and thermal properties of PP was investigated. The blends were prepared individually on brabender plastograph by incorporating nPS of ~60 nm with different wt% of loading (i.e., 0.10–0.5%). It was shown from the experimental results that thermal, rheological, and mechanical properties were increased as the polymer particles blended with PP. Blends with 0.25 wt% loading of nPS exhibit better properties compared with that of other wt% loadings. The improvements in properties were due to the close packing of PP chains as recorded by improvement in crystallinity of PP with the addition of nPS as shown by SEM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

7.
The mechanical characteristics and thermal properties of composite films based on the thermally stable aromatic polyimide (PI) (PMDA‐ODA) and carbon nanocones/discs (CNC) were studied. The introduction of CNC to PMDA‐ODA leads to the substantial increase of film stiffness. The Young's modulus values of the composite films are somewhat higher than those of the previously characterized composite films of this PI filled with nanoclay, carbon nanofibers, and asbestos‐like hydrosilicate nanotubes. The introduction of CNC into PMDA‐ODA (concentrations of CNC were up to 15 vol%) does not cause any marked aggregation of nanoparticles. The presence of CNC in the PI matrix does not affect the glass transition temperature of the polymer but hinders chain mobility at temperatures above Tg. This behavior makes it possible to increase the working temperature range of the composite films containing more than 5 vol% of CNCs, up to the temperature of thermal decomposition. The introduction of CNC into PMDA‐ODA leads to dramatic (~12 orders of magnitude) increase of active electrical conductivity of the material. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Rheological, thermal, and mechanical properties of polymer particle/LLDPE blends were studied in this paper. The blends were prepared individually by incorporating nanoparticles of polystyrene (nPS) of ~60 nm and polymethyl methacrylate (nPMMA) of ~50 nm with different wt% loading (i.e., 0.10–0.5%). It was shown from the experimental results that rheological, thermal and mechanical properties were increased as polymer particles blended with LLDPE. Blends with 0.25 wt% loading of nPS and 0.5 wt% loading of nPMMA exhibited better rheological, thermal, and mechanical properties compared with that of other wt% loadings. The improvements in properties were due to the close packing of LLDPE chains as recorded by improvement in crystallinity of LLDPE with addition of nPS and nPMMA as shown by SEM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A new high molecular weight polyimide based on 4,4-oxidiphthalic anhydride (ODPA) dianhydride and 2,2-dimethyl-4,4-diaminobiphenyl (DMB) diamine has been synthesizedvia a one-step polymerization method. This polyimide is soluble in phenolic solvents. Films from 7 to 30 m thick were cast from the polymer solution and show in-plane orientation on a molecular scale detected by Fourier transform infrared spectroscopy experiments. This anisotropic structure leads to anisotropic optical properties arising from two different refractive indices along the inplane and out-of-plane directions. ODPA DMB possesses high thermal and thermo-oxidative stability. The glass transition temperature has been determined to be 298 °C. Dynamic mechanical analyses show two relaxation processes appearing above room temperature: the - and the -relaxation processes. The -relaxation corresponds to the glass transition while the -relaxation is a secondary relaxation process associated with the non-cooperative subsegmental motion.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayYHK acknowledges the support from the Yonam Foundation, Korea. This work was also supported by the Center of Molecular and Microstructure of Composites (CMMC) of NSF/EPIC/Industry, SZDC gratefully acknowledges the support from his PYI Award (DMR-9157738) from the National Science Foundation.  相似文献   

10.
The tensile strength and thermal stability of polylactide (PLA) were significantly improved through chemical crosslinking. However, it became much more rigid and brittle. To obtain a material with good thermal stability and enhanced ability to plastic deformation, chemical crosslinked PLA with 0.5 wt % triallyl isocyanurate and 0.5 wt % dicumyl peroxide was blended with different contents of dioctyl phthalate (DOP). The advantage of using DOP is that it does not crystallize, has low glass transition temperature, and is miscible with PLA. The morphology and the thermal and mechanical properties of the crosslinked PLA and the blends of crosslinked PLA with various contents of DOP were investigated by means of scanning electron microscope, differential scanning calorimetry, tensile test, and dynamic mechanical analysis. The rheological properties of samples were also explored by using a capillary rheometer. The results showed that the DOP was an effective plasticizer for the chemical crosslinked PLA, resulting in a significantly decreased Tg, lower yield stress, and improved elongation at break. The plasticization effect was enhanced by adding higher DOP content. In addition, the DOP enhanced the crystallinity of crosslinked PLA, and all the crosslinked samples showed better heat stability than neat PLA. The apparent viscosity of the blends decreased with the increase of DOP content and a phase separation occurred when the content of DOP exceeded 12.5 wt %. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1136–1145, 2009  相似文献   

11.
This research aims to produce lignin‐based biodegradable polyesters with improved thermal quality. A series of aliphatic polyesters with lignin‐based aromatic side groups were synthesized by conventional melt‐polycondensation. Decent molecular weight (21–64 kg mol?1) was achieved for the polymerizations. The molecular structures and thermal and mechanical properties of the obtained polyesters were characterized. As a result, the obtained polyesters are all amorphous, and their glass‐transition temperature (Tg) depends on the size of the pendant aromatic group (31–51 °C). Furthermore, according to the TGA results, the thermal decomposition temperatures of the polyesters are all above 390 °C, which make them superior compared with commercial biodegradable polyesters like polylactic acid or polyhydroxyalkanoates. Finally, rheological characteristics and enzymatic degradation of the obtained polyesters were also measured. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2314–2323  相似文献   

12.
Dried gels of a linear low-density polyethylene cast from decalin solutions are investigated with particular attention toward structural, thermal, and mechanical properties. The number-average and weight-average molecular weights are Mn = 32,000 and Mw = 160,000. In the concentration range 1.00–0.20, the swollen gels exhibit nearly isotropic shrinkage upon drying, which is relevant to an ideal crosslinked network behavior. For the concentrations below 0.20, a strong departure from the isotropic shrinkage indicates that the chains begin to disengage from the macromolecular network owing to the dilution effect. The melting behavior of the dried gels shows that crystallization from solution improves the crystal perfection notably as concerns the more defective crystals. The concomitant decrease of the crystal thickness judged from small-angle X-ray scattering is ascribed to a reduction of the surface free energy which is consistent with the build up of regular chain-folded macroconformations. The drawability of the dried gels is considerably improved with increasing dilution as a result of the gradual disentanglement of the coils prior to the crystallization in solution. But beyond concentration 0.20, the drawability drops because of the loss of intermolecular cohesion when the chains begin to disengage from the network. The drastic change of yield behavior between the melt-crystallized and solution-crystallized samples reveals a ductile-to-brittle transition in the mechanism of failure of the crystallites at low strain. This phenomenon is related to the improvement of regular chain-folding.  相似文献   

13.
This paper deals with the morphology and mechanical properties of blend films for polytetrafluoroethylene (PTFE) and ultra-high molecular weight polyethylene (UHMWPE) prepared by kneading techniques. This experiment was carried out for blend films, prepared with different compositions of PTFE and UHMWPE to improve thermal properties of PE. In spite of the incompatibility of the two polymers, the blend film with the PTFE/UHMWPE composition =75/25 was maintained under the measurement of complex modulus at temperature higher than 300°C. This indicates that the UHMWPE chains dispersed in PTFE fibrous texture were not separated by the melting flow of UHMWPE at 300°C. To check the origin of this interesting phenomenon, the morphology of the blend films was investigated by using scanning electron microscopy, X-ray diffraction, and13C nuclear magnetic resonance.  相似文献   

14.
In this work, high density polyethylene (HDPE) was mixed in a twin screw extruder with organophilic treated clay, Cloisite 20A, and a compatibility agent, a HDPE grafted with maleic anhydride (PEMA). The screw profile was changed from a less dispersive (Profile 1) to a high dispersive configuration (Profile 2). A masterbatch procedure was used to obtain a final organoclay concentration of 5 wt.%. Both profiles allowed the intercalation of the HDPE into the clay, increasing the clay’s gallery distance to 3.7 nm. However, the samples produced with Profile 2 (Nano 2 samples) were more elastic and had a more stable structure than the samples produced with Profile 1. Therefore, two kind of blown films of Nano 2 samples were made: FN1 and FN2. The last one was blown at a higher screw velocity than the FN1. Both films had an increase of 95% in the elastic modulus and a reduction of 60% and 45% in O2 and water vapor permeability rates, respectively, compared to the film of pure HDPE. However, the FN2 structure was more unstable than the FN1 structure. It was concluded that both screw profiles gave the same level of HDPE intercalation in the clay; however, the more dispersive profile produced more time-stable and elastic structures. The increase in the elongation rate during the film blowing process produced also more time-stable morphologies; however, this higher orientation created matrix/filler interfacial defects.  相似文献   

15.
顾群 《高分子科学》2013,31(4):670-678
Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene nanosheet (GNS) composites were prepared via a solution-casting method at low GNS loadings in this work. Transmission electron microscopy revealed that a fine dispersion of GNSs was achieved in the PHBV matrix. The thermal properties of the nanocomposites were investigated by thermogravimetric analysis, and the results showed that the thermal stability of PHBV was significantly improved with a very low loading of GNSs. Nonisothermal melts crystallization behavior, spherulitic morphology and crystal structure of neat PHBV and the PHBV/GNSs nanocomposites were investigated, and the experimental results indicated that crystallization behavior of PHBV was enhanced by the presence of GNSs due to the heterogeneous nucleation effect; however, the two-dimensional (2D) GNSs might restrict the mobility of the PHBV chains in the process of crystal growing. Dynamic mechanical analysis studies showed that the storage modulus of the PHBV/GNSs nanocomposites was greatly improved.  相似文献   

16.
张会良 《高分子科学》2015,33(12):1702-1712
Poly(propylene carbonate)(PPC) was blended with polylactide(PLA) and poly(1,2-propylene glycol adipate)(PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.  相似文献   

17.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Rheological, thermal, and mechanical properties of polypropylene homo polymer (PPH)/amorphous poly alpha olefin (APAO) blends as a function of molecular weight, comonomer type and content, and blend composition have been investigated. Homo APAO grade showed better compatibility than copolymerized ones in terms of rheological and thermal properties. The mechanical strength showed strong dependence on APAO content and type, and the impact strength and melt index rapidly increased for certain types of APAO at and above 30 wt%. On comparison with commercially used PPH/ethylene–propylene rubber (EPR) blend system, it is supposed that PPH/APAO blend can be successfully used in thermoplastic polyolefin applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
To investigate the effect of catalysts on the thermal, rheological, and mechanical properties of an epoxy system, a resin based on diglycidyl ether of bisphenol‐A (DGEBA) was cured by two cationic latent thermal catalysts, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH). Differential scanning calorimetry was used for the thermal characterization of the epoxy systems. Near‐infrared spectroscopy was employed to examine the cure reaction between the DGEBA and the latent thermal catalysts used. The rheological properties of the blend systems were investigated under an isothermal condition with a rheometer. To characterize the mechanical properties of the systems, flexure, fracture toughness (KIC), and impact tests were performed. The phase morphology was studied with scanning electron microscopy of the fractured surfaces of mechanical test samples. The conversion and cure activation energy of the DGEBA/BQH system were higher than those of the DGEBA/BPH system. The crosslinking activation energy showed a result similar to that obtained from the cure kinetics of the blend systems. The flexure strength, KIC, and impact properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system. This was a result of the substituted benzene group of the BQH catalyst, which increased the crosslink density and structural stability of the epoxy system studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 187–195, 2001  相似文献   

20.
Silkworm silk/Poly(lactic acid) (silk/PLA) biocomposites with potential for environmental engineering applications were prepared by using melting compound methods. By means of Dynamic mechanical analysis (DMA), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Coefficient of thermal expansion test, Enzymatic degradation test and Scanning electron microscopy (SEM), the effect of silk fiber on the structural, thermal and dynamic mechanical properties and enzymatic degradation behavior of the PLA matrix was investigated. As silk fiber was incorporated into PLA matrix, the stiffness of the PLA matrix at higher temperature (70-160 °C) was remarkably enhanced and the dimension stability also was improved, but its thermal stability became poorer. Moreover, the presence of silk fibers also significantly enhanced the enzymatic degradation ability of the PLA matrix. The higher the silk fiber content, the more the weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号