首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two types of 4-methylpyridinium polymers (4VP-DVB-Me and 4VP-EG-Me, cross-linked with divinylbenzene and ethylene glycol dimethacrylate, respectively) were employed for the analysis of proteins in ion-exchange high-performance liquid chromatography. These polymers had different physical properties in the dry state, but showed similar retentions in size-exclusion chromatography using carbohydrate standards. Generally, the 4VP-EG-Me column was superior to the 4VP-DVB-Me column with regard to separation and recovery of proteins.  相似文献   

3.
4.
The technique of programming the carrier gas flow rate in gas chromatography, especially in connection with the use of capillary columns shorter than 10 m can significantly accelerate GC analyses. Equations for calculation of the parameters of the exponential flow function and retention data are described. The effects of flow programming in a short capillary column are shown in a few chromatograms. Different programming rates are tested and compared with temperature programming.  相似文献   

5.
A surfactant-bound monolithic stationary phase based on the co-polymerization of 11-acrylamino-undecanoic acid (AAUA) is designed for capillary high performance liquid chromatography (HPLC). Using D-optimal design, the effect of the polymerization mixture (concentrations of monomer, crosslinker and porogens) on the chromatographic performance (resolution and analysis time) of the AAUA–EDMA monolithic column was evaluated. The polymerization mixture was optimized using three proteins as model test solutes. The D-optimal design indicates a strong dependence of chromatographic parameters on the concentration of porogens (1,4-butanediol and water) in the polymerization mixture. Optimized solutions for fast separation and high resolution separation, respectively, were obtained using the proposed multivariate optimization. Differences less than 6.8% between the predicted and the experimental values in terms of resolution and retention time indeed confirmed that the proposed approach is practical. Using the optimized column, fast separation of proteins could be obtained in 2.5 min, and a tryptic digest of myoglobin was successfully separated on the high resolution column. The physical properties (i.e., morphology, porosity and permeability) of the optimized monolithic column were thoroughly investigated. It appears that this surfactant-bound monolith may have a great potential as a new generation of capillary HPLC stationary phase.  相似文献   

6.
Miniaturized and capillary techniques will gradually become more important in Liquid Chromatography (LC). Micro-LC, or the chromatography in fused silica packed capillary columns, has so many important advantages and characteristics that this is probably the form of miniaturized LC that has the greatest chance to make it. These advantages, as discussed in the present paper should lead to LC in less than 30 minutes with a plate number for the column of 20,000 to 50,000. Unlike Capillary GC which took about 25 years to assert itself Micro-IC will probably not take so long.  相似文献   

7.
The purpose of this report is to introduce a new method for use in coating polymeric stationary phase films on the inside wall of small bore diameter fused silica capillary tubing. This technique is being developed for use in fabricating capillary columns for open tubular liquid chromatography.  相似文献   

8.
Porous ceramic bed supports for fused silica packed capillary columns utilized in liquid chromatography were prepared by polymerizing solutions containing potassium silicate in-situ within a column to create a mechanically stable, rugged, and easily constructed termination. The effect of the bed support length on efficiency, and comparisons to glass wool bed supports, were considered in terms of column efficiencies and hydrodynamic variables. Results obtained indicate better performance for the ceramic bed support.  相似文献   

9.
Summary Fused silica capillaries, ≈ 130 × 0.32mm have been packed with small reversed phase spherical silica particles, 3 or 2μm, in order to achieve LC-systems giving high plate numbers at relatively low pressure drop in short analysis times. At optimal conditions, columns packed with 3μm particles showed reduced plate heights, h, around 2.5, and the column flow resistance, ϕ, was 335–625. With 2μm particles, a reduced plate height of only 3.7 was achieved, which reflects the difficulty in the packing of such small particles.  相似文献   

10.
The effect of the conditions of synthesis of divinylbenzene-based monolithic capillary columns on their chromatographic characteristics was studied. It was demonstrated that the porosity and permeability of the column change significantly even at small deviations from the optimum conditions of polymerization of the monolith in the column. By contrast, the minimum value of HETP proved to be only slightly sensitive to the conditions of synthesis, ranging within ~10–20 μm. The conditions of polymerization of the monolith were found to produce more pronounced effect on the slope of the right branch of the van Deemter curve (parameter C), with the flattest curve being observed for columns prepared under optimum conditions. The minimum value of HETP for polymer monolithic capillary columns was found to be similar to that for silica gel monolithic capillary columns, but the latter are characterized by C values approximately an order of magnitude lower.  相似文献   

11.
Methods for the analysis of maize proteins using HPLC and CE are reviewed. Most of the references cited in this review concern HPLC methods. Size-exclusion HPLC and especially RP-HPLC methods have been developed for characterization of normal and genetically modified maize, cultivar differentiation, and prediction of quality. Few CE methods for the analysis of maize proteins were found in the existing literature. Most of these methods focus on optimization of the separation of maize proteins using CZE and SDS-capillary gel electrophoresis.  相似文献   

12.
13.
Retention gaps with different polarity treatments were evaluated for reversed phase solvents. Aminopropyl- and cyanopropyl-deactivated retention gaps showed the best results for methanol-water mixtures. A reversed phase packed fused silica capillary LC column is connected on-line with a capillary gas chromatography column. The combination was used for the analysis of diazepam in urine. Volume overloading on packed fused silica columns without loss of too much efficiency was demonstrated for propranolol.  相似文献   

14.
Various modes of high-performance liquid chromatography, gel filtration, ion-exchange chromatography, hydrophobic interaction chromatography, reversed-phase chromatography and metal chelate affinity chromatography, were investigated for the separation of membrane proteins. All were found applicable to membrane proteins, although the usefulness of each mode differed. For satisfactory results it was important to select appropriate elution conditions. The type and concentration of detergent was of special importance. The effects of other conditions, flow-rate, gradient steepness, type of buffer and salt, eluent pH, etc., were similar to those observed for soluble proteins.  相似文献   

15.
A novel two-dimensional electrophoretic system for the control of electroosmosis in capillary zone electrophoresis has been developed and evaluated for rapid separations of proteins. The system comprises uncoated and polyether-coated fused silica capillaries coupled in series. An equation relating the average electroosmotic flow velocity in the coupled capillaries to the intrinsic electroosmotic velocities of the connected segments and their corresponding lengths has been derived and verified experimentally. This approach has the advantage of enabling the electroosmotic flow to be tuned independently of the applied voltage. As a consequence, rapid protein analysis at relatively low field strength was achieved without sacrificing the high separation efficiencies obtained with surface-modified capillaries.  相似文献   

16.
In recent years, continuous separation media have attracted considerable attention because of the advantages they offer over packed columns. This research resulted in two useful monolithic material types, the first based on modified silica gel and the second on organic polymers. This work attempts to review advances in the development, characterization, and applications of monolithic columns based on synthetic polymers in capillary chromatography, with the main focus on monolithic beds prepared from methacrylate-ester based monomers. The polymerization conditions used in the production of polymethacrylate monolithic capillary columns are surveyed, with attention being paid to the concentrations of monomers, porogen solvents, and polymerization initiators as the system variables used to control the porous and hydrodynamic properties of the monolithic media. The simplicity of their preparation as well as the possibilities of controlling of their porous properties and surface chemistries are the main benefits of the polymer monolithic capillary columns in comparison to capillary columns packed with particulate materials. The application areas considered in this review concern mainly separations in reversed-phase chromatography, ion-exchange chromatography, hydrophobic and hydrophilic interaction modes; enzyme immobilization and sample preparation in the capillary chromatography format are also addressed.  相似文献   

17.
18.
19.
Yang X  Zhang X  Li A  Zhu S  Huang Y 《Electrophoresis》2003,24(9):1451-1457
A novel comprehensive two-dimensional (2-D) separation system coupling capillary high-performance liquid chromatography (cHPLC) with microchip electrophoresis (chip CE) is demonstrated. Reversed-phase cHPLC was used as the first dimension, and chip CE acted as the second dimension to perform fast sample transfers and separations. A valve-free gating interface was devised simply by inserting the outlet-end of LC column into the cross-channel on a specially designed chip. A home-made confocal laser-induced fluorescence detector was used to perform on-chip high-sensitive detection. The cHPLC effluents were continuously delivered to the chip and pinched injections of the effluents every 20 seconds were employed for chip CE separation. Gradient elution of cHPLC was carried out to obtain the high-efficiency separation. Free-zone electrophoresis was performed with triethylamine buffer to achieve high-speed separation and prevent sample adsorption. Such a simple-made comprehensive system was proved to be effective. The relative standard deviations for migration time and peak height of rhodamine B in 150 sample transfers were 3.2% and 9.8%, respectively. Peptides of the fluorescein isothiocyanate (FITC)-labeled tryptic digests of bovine serum albumin were fairly resolved and detected with this comprehensive 2-D system.  相似文献   

20.
Summary Fused silica is by far the best material for most kinds of GC capillary columns but in some particular conditions, when a drastic or alkaline treatment is required, this material and especially the polyimide protector layer do not possess high chemical resistance and could easily break down. In order to overcome this disadvantage, in this paper, we present a new type of column — a quartz-lined aluminum capillary coated with graphitized carbon black modified by liquid phases by using a new coating procedure. With the above material a capillary column for amine analysis, and another for the analysis of VOCs and oil products are obtained. Some characteristic applications of both columns are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号