首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatographic (LC) type trace enrichment is coupled online with capillary gas chromatography (GC) with mass spectrometric (MS) detection for the analysis of aqueous samples. A volume of 1–10 ml of an aqueous sample is preconcentrated on a trace-enrichment column packed with a polymeric stationary phase. After cleanup with HPLC-grade water the precolumn is dried with nitrogen and subsequently desorbed with ethyl acetate. A fraction of 60 μl is introduced on-line into a diphenyltetramethyldisilazane-deactivated retention gap under partially concurrent solvent evaporation conditions and using an early solvent vapor exit. The analytes are separated and detected by means of GC–MS. The potential of the LC–GC–MS system for monitoring organic pollutants in river and drinking water is studied. Target analysis is carried out with atrazine and simazine as model compounds; the detection limits achieved under full-scan and multiple ion detection conditions are 30 pg and 5 pg, respectively. Identification of unknown compounds (non-target analysis), is demonstrated using a river water sample spiked with 168 pollutants varying in polarity and volatility.  相似文献   

2.
Abstract

Phenylurea herbicides are analysed by reversed-phase liquid chromatography using UV detection at 244 nm after a concentration step in order to determine ppb or sub-ppb levels in drinking and river waters. With an average UV detection limit of 5 ng, a 500 ml sample volume is necessary to reach the 10 ppt level for spiked LC grade water samples and enables easy determination of concentrations below the ppb level for river water samples. Off-line and on-line methods are compared for the concentration step. Off-line concentration consists in a liquid sorption on n-octadecyl silica (C18) and elution by a suitable organic solvent. Polar phenylureas have low retention volumes on C18 silica and consequently the length of the concentration column has to be 10 cm to concentrate them at the ppb level from 100 ml of water and longer for lower levels of detection. Nevertheless, we show that increasing the size of the concentration column does not improve the limits of detection because of the numerous interferences also concentrated when percolating high volumes of water. On-line technology can be used only with short precolumns and requires a sorbent with a great retention for phenylureas. The copolymer-based PRP-1 is found to be an excellent sorbent and it is then possible to apply on-line precolumn technology with preconcentration through two precolumns (10 × 21 mm ID) in series, the first one being packed with C18 silica and the other with the PRP-1 polymer. Interfering compounds are then trapped onto the first precolumn acting as a filter and common phenylurea-breakthrough volumes on the PRP-1 precolumn are higher than 500 ml. Knowing the amounts preconcentrated on both precolumns and using UV and electrochemical detection help the identification of phenylureas in river water.  相似文献   

3.
Liu JF  Liang X  Jiang GB  Cai YQ  Zhou QX  Liu GG 《Talanta》2003,60(6):1155-1161
An on-line coupled continuous flow liquid membrane extraction (CFLME) and C18 precolumn system was developed for sample preconcentration in liquid chromatography determination. After preconcentration by CFLME, which is based on the combination of continuous flow liquid–liquid extraction and supported liquid membrane, bisphenol A (BPA) was enriched in 960 μl of 1 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto a C18 analytical column for separation and detected at 220 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor, and enrichment time were optimized. The proposed method presents a detection limit of 0.03 μg l−1 (S/N=3) when 60 ml samples was enriched with an enrichment time of 30 min. Compared with C18 based column-switching procedure, this proposed procedure presents similar sample throughput and lower detection limits. The proposed method was successfully applied to determine BPA in tap water, river water, and municipal sewage effluent samples.  相似文献   

4.
An automated system for derivaatization was coupled on-line with solid-phase extraction-gas-chromatography (SPE-GC). The system was optimized for the determination of phenol and chlorinated phenols in aqueous samples. The test analytes were acetylated with acetic anhydride; proper buffering of the sample was a critical factor. Next, the phenol acetates were enriched on a SPE cartridge and transferred to a GC; two appraoaches were studied. In the first approach, the derivatives were enriched on disposable C18 cartridges (ASPEC type) and desorbed with methylacetate. Aan aliquot of the final eluate was injected on-line the GC by means of a loop-type interface. In the second approach, trace enrichment was performed on 10 × 2 mm i.d. LC-type precolumn packed with polystyrenedivinylbenzene copolymer (PLRP-S) this precolumn was dried with a mitrogen purge and the phenol acetates were desorbed with ethyl acetate which was injectedon-line into the retention gap of the GC under partially concurrent solvent evaporation (PCSE) conditions. The Derivatization-SPE-GC system which was based on the loop-type interface has the advantage of simplicity and easy operation, the main drawback is the impossibility to determine phenol acetates which elute prior to trichlorophenol acetates. With the derivatization-SPE-GC approach using PCSE-based desorption, even the most volatile analyte of the test series, phenol acetate, can be determined successfully. The entire procedure, including the derivatization step, was fully automated and integrated in one set-up. The precision data for the integrated on-line derivatization-SP-FID system were fully satisfactory, with RSD values of 1–12 % at the 1 μg/1 level. When a sample volume of 2.2 ml was analyzed, The detection limits for the chlorinated phenol acetates were in the 0.1–0.3 μg/1 range.  相似文献   

5.
Abstract

A semi-automated method providing on-line sample extraction and quantitative analysis for cefpodoxime in human urine, injected directly into the HPLC, is reported.

Samples were filtered by the analyst, injected into the HPLC system with an autosampler and loaded onto a 3 cm RP-18 precolumn with a mobile phase consisting of 10% methanol in 0.2% phosphoric acid and then automatically eluted onto a RP-18 analytical column using a mobile phase containing 7% acetonitrile in pH 5.2 sodium acetate buffer. the mean between-day precision of the standards was ± 4.29%. Spiked urine control recovery averaged 96 ± 6% for controls ranging from 1.0 to 20.0 μg/mL. the limit of quantitation for the method was 0.11 μg/mL.  相似文献   

6.
An on-line system that consists of continuous-flow liquid membrane extraction (CFLME), C18 precolumn, and liquid chromatography with UV detection was applied to trace analysis of sulfonylurea herbicides in water. During preconcentration by CFLME, five target compounds, including metsulfuron methyl, bensulfuron methyl, tribenuron methyl, sulfometuron methyl, and ethametsulfuron, were enriched in 960 microl of 0.5 mol l(-1) Na2CO3-NaHCO3 (pH 10.8) buffer used as acceptor. This acceptor was on-line neutralized and transported to the C18 precolumn where the analytes were absorbed and focused. Then the focused analytes were injected onto a C18 analytical column for separation and detection at 240 nm. The proposed method was applied to determine sulfonylurea herbicides in water, river, and reservoir water with detection limits of 10-50 ng l(-1) when enriching a 120-ml sample. Throughput is typically one sample per hour.  相似文献   

7.
A procedure is developed for the determination of several amines in drinking and natural waters by capillary electrophoresis with isotachophoretic on-line preconcentration without sample preparation. A background electrolyte based on acridine as an absorbing ion is proposed for analysis with isotachophoretic on-line preconcentration and indirect photometric detection. The sample was injected in the hydrodynamic mode. The procedure was tested on drinking and natural water samples. The accuracy of data obtained was confirmed by the added–found method. The analytical range was from 0.25 to 5 mg/L. The time of one analysis was 5–6 min.  相似文献   

8.
Trace enrichment for the GC analysis of a series of chlorinated pesticides and polychlorinated biphenyls (PCBs) in aqueous samples has been achieved through a simple on-line technique involving sorption on an LC micro-precolumn followed by direct elution into a gas chromatograph with hexane. A 5-m retention gap coupled to the capillary GC column served as the recipient of a relatively large sample volume (ca. 100 μl) introduced into the GC. Partially concurrent solvent evaporation during sample introduction allowed a large sample capacity. Recoveries of more than 95% were observed for the majority of the compounds studied. Using 1.0 ml aqueous samples, detection limits of less than 1 ppt were found. The applicability of the developed method was demonstrated for a river water sample.  相似文献   

9.
A drying cartridge was used and optimized for the in-line elimination of water from the desorption eluent in on-line solid phase extraction–gas chromatography (SPE–GC). The cartridge is essentially a small stainless-steel precolumn packed with a drying agent which can be regenerated by simultaneous heating and purging with a moisture-free gas. The drying cartridge was mounted on an additional valve instead of between the SPE–GC transfer valve and the on-column injector to enable regeneration of the cartridge during the GC run and, thus, to increase sample throughput. Three drying agents were tested, viz. sodium sulfate, silica, and molecular sieves. Although molecular sieves have the highest capacity, silica was preferred because of practical considerations. Large-volume injections were performed through the in-line drying cartridge using a mixture of 23 microcontaminants ranging widely in polarity and volatility. Four solvents were tested. With pentane and hexane, the more polar analytes were retained by the drying cartridge. Ethyl acetate and methyl acetate gave much better (and closely similar) recoveries for all analytes. Because water elimination on the silica cartridge proved to be less critical than with ethyl acetate, this solvent was finally selected. The entire SPE–drying cartridge–GC set-up was combined with mass spectrometric (MS) detection for the determination of a mixture of micropollutants in real-life water samples. With 10-ml tap water samples spiked at the 0.5 μg/l level, for the majority of the test compounds the analyte recoveries generally were 60–106%, and (full-scan) detection limits typically were 0.01–0.03 μg/l. Some very polar analytes such as, e.g. dimethoate, were (partially) sorbed onto the silica packing of the drying cartridge.  相似文献   

10.
Summary A fast and simple procedure for the analysis of aqueous samples by on-line membrane disk extraction and capillary gas chromatography (GC) is presented. As an example, organophosphorus pesticides are preconcentrated from aqueous samples on three 0.5 mm thick, 4.2 mm diameter extraction disks. The layers are dried by a stream of nitrogen (10–15 min; ambient temperature). Desorption of the analytes is carried out with ethyl acetate which is directly introduced into a retention gap under partially concurrent solvent evaporation conditions, using an early solvent vapour exit. The final analysis is carried out by GC with thermionic detection. The technique is applied to the determination of a series of organophosphorus pesticides in tap water and water from two European rivers. With a sample volume of only 2.5 ml, detection limits of 10–30 ppt are achieved in tap water and of 50–100 ppt in river water.  相似文献   

11.
《Analytical letters》2012,45(12):2201-2219
Abstract

A new on-line precolumn preconcentration method for the determination of EPA priority pollutants (PAHs) in river and sea water has been developed. The retention time for each PAH in the precolumn has been determined for several percentages of organic solvent (acetonitrile) in the sample. This is very important because recoveries show a great dependence on this parameter.

The proposed procedure, combined with HPLC and spectrofluorimetric detection, reaches very low detection limits (subnanograms per liter) and it has been applied to river and sea water samples with good results.  相似文献   

12.
In this work, the development of two solid-phase extraction procedures (off-line and on-line formats) for the identification and quantification of several (fluoro)quinolones in hospital sewage water by HPLC-UV is described. Both procedures are based on the use of C18 and anion exchange (SAX) sorbents for the preconcentration and clean-up steps, respectively, and all variables influencing both steps were optimised. In the off-line format, after its pH was adjusted to 2.5, sample was preconcentrated on a C18 cartridge and eluted with 4 mL of methanol/ammonia (94/6). The methanolic extract must be diluted up to 10 mL with water to allow quantitative retention of the analytes on the SAX cartridge. In the on-line format, the addition of 2.5% of NH4Cl to the sewage water sample (pH = 2.5) was necessary to increase the breakthrough volumes of the analytes in the C18 precolumn. Quantitative transfer of the (fluoro)quinolones from the C18 precolumn to the SAX precolumn was accomplished by pumping 2 mL of a mixture methanol/water (40/60, pH = 9.2) at 2 mL min(-1). Elution of the analytes from the SAX precolumn by means of the chromatographic mobile phase required the inclusion of an additional isocratic step at the beginning of the gradient program. Both off-line and on-line solid phase extraction procedures coupled to HPLC-UV were applied to the analysis of a sewage water sample collected in the sewer system at the output of the St Dimphna Hospital (Geel, Belgium). The fluoroquinolone ciprofloxacin was found in this sample and quantified at 5.8 +/- 0.4 microg L(-1) (off-line method) and 5.6 +/- 0.5 microg L(-1) (on-line method). The analysis of spiked samples containing the seven (fluoro)quinolones studied provided quantitative recoveries in all cases with low RSD values (from 6 to 12%), and all the analytes could be identified by means of their UV spectra with match factors varying from 950 to 985 depending on the (fluoro)quinolone.  相似文献   

13.
Abstract

Three chromatographic methods for determining p-hydroxy-phenytoin (p-HPT) in urine were compared: (1) GC with derivatisation of the samples, (2) HPLC after extraction with ethyl acetate and (3) HPLC using a column switching system for direct injection of samples. In all three methods the p-HPT glucuronides were first hydrolysed using concentrated mineral acid at boiling point. For method (1) the acidic hydrolysate was adjusted to pH 7–8.5. Benzenetetrahydrofuran was used for extraction of p-HPT. The extract was evaporated to dryness, taken up in trimethyl-aniliniumhydroxide and injected. For method (2) the acidic hydrolysate was buffered with tri-sodium phosphate. An aliquot of the buffered solution was extracted with ethyl acetate. The extract was evaporated to dryness, taken up in methanol and injected. For method (3) the hydrolysate was diluted with water/acetonitrile (9:1), centrifuged and directly injected onto the pre-column for the sample washing step.  相似文献   

14.
An HPLC method has been developed for the determination of pseudoephedrine in plasma using column switching. Preparation of the sample was simple in that only 1000 microL of water was added to 200 microL of plasma before injection. A 900 microL aliquot was injected onto the precolumn. Double distilled water was used to elute and remove proteins and polar components in the sample. The components retained on the precolumn were flushed forward onto the analytical column by the mobile phase (acetonitrile-0.2 mol/L ammonium sulphate, 10:90 v/v) with automated column switching. The limit of determination of pseudoephedrine in plasma was 12 ng/mL. The relative standard deviations of intra- and inter-assay for the determination of pseudoephedrine in plasma were 1.2-9.8% over the concentration range 1020-21.8 ng/mL. The mean recovery by on-line solid phase extraction was 94.76% (RSD = 1.1%).  相似文献   

15.
Summary An on-line procedure is described for the trace-level determination of mono-, di- and methyl-chloroanilines in aqueous samples using selective preconcentration with a cation-exchanger and liquid chromatography with UV and electrochemical detection. Because direct percolation through a cation-exchanger has to be avoided owing to the high content of inorganic anions present in natural waters, a two-step on-line preconcentration was carried out: chloroanilines were first trapped on a precolumn packed with an apolar polymeric sorbent (PRP-1) in their neutral form. Then the PRP-1 precolumn was coupled in series with a second precolumn containing cation exchange material. The chloroanilines were removed from the first precolumn with 3 mL of deionised water: acetonitrile (31) at pH 1 and retained by the cation exchange column. The contents of the cation exchange column were finally desorbed onto the analytical column and eluted with a water: acetonitrile gradient. The combination of selective trace enrichment and sensitive electrochemical detection allows the simultaneous determination of chloroanilines from 150 mL of river water samples with detection limits below 30 ng/l. Identification is confirmed by the selective preconcentration and the two detection modes.  相似文献   

16.
A continuous flow liquid membrane extraction (CFLME)-C18 precolumn-liquid chromatography system was developed for preconcentration and determination of chlorinated phenols (CPs). After preconcentration by CFLME, which is based on the combination of continuous flow liquid-liquid extraction and supported liquid membrane, CPs were enriched in 960 μl of 0.5 mol l−1 NaOH used as acceptor. This acceptor was on-line neutralized and transported onto the C18 precolumn where analytes were absorbed and focused. Then the focused analytes were injected onto the C18 analytical column for separation and detected at 215 nm with a diode array detector. CFLME related parameters such as flow rates, pH of donor and acceptor concentration were optimized. The proposed method presents detection limits of 0.02-0.09 μg l−1 (S/N=3) when 100 ml samples were enriched. The proposed method was successfully applied to determine CPs in tap water and river water samples with spiked recoveries in the range of 70-121%.  相似文献   

17.
An on-line sample enrichment system was designed using monolithic precolumns in microcolumn LC. The monolithic ODS capillary columns were prepared via in situ sol-gel processes. The enrichment efficiency of the monolithic columns was tested by using phthalates as the analytes. The relative standard deviations (n = 6) for the retention time, peak area and peak height were between 0.4 and 1.2%, 0.9 and 5.5% and 0.4 and 3.9%, respectively. The system was linear (R2 > 0.99) within the working sample concentration and sample volume ranges. Comparing to 0.2 microl injection with a typical sample injector, the theoretical plate number of a same separation column was increased by 3-6-fold when the precolumn unit was used for sample injection. The recoveries of the analytes were between 88 and 120%, and the sample volume that could be injected into the system was increased up to 5000-fold. The limits of detection were improved by more than 2000-fold and were between 0.21 and 0.87 ng ml(-1) even with a UV absorbance detector. This system was applied to the determination of phthalates contained in laboratory distilled water and tap water samples.  相似文献   

18.
《Analytical letters》2012,45(9):1098-1110
Unmodified multi-walled carbon nanotubes (MWCNTs) were demonstrated as hydrophobic sorbent material for flow injection on-line microcolumn preconcentration coupled with flame atomic absorption spectrometry for cadmium determination in natural water samples. The method was based on on-line chelate complex formation between the analyte with sodium diethyldithiocarbamate and retention onto the surface of MWCNTs. Quantitative elution of the analyte was achieved with methanol which was whereupon delivered to the FAAS nebulizer for atomization and measurement. The microcolumn was packed with a mixture of MWCNTs and silica beads in order to minimize the generated back-pressure in the flow system which arises from the nano dimensions of MWCNTs. All factors affecting the performance of the proposed method were studied thoroughly. For a 180 s preconcentration time the enhancement factor was 54, the detection limit (3s) was 0.24 µg L?1, and the precision as relative standard deviation at a 5.0 µg L?1 Cd(II) concentration level was 3.2%. The method was applied to the analysis of environmental water samples and the accuracy evaluated via certified reference material and recovery experiments.  相似文献   

19.
The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2 1 samples spiked with a test mixture of oxamyl, methomyl and aldicarb sulfoxide were enriched on EnviCarb SPE cartridges or 47 mm diameter EACD and eluted with dichloromethane-methanol. After evaporation, a sample was injected onto a C18-bonded silica column and analysed by liquid chromatography with ultraviolet (LC-UV) detection. EACD performed better than EnviCarb cartridges in terms of breakthrough volumes (>2 1 for all test analytes), reproducibility (R.S.D. of recoveries, 4–8%, n=3) and smapling speed (100 ml/min); detection limits in drinking water were 0.05–0.16 μg/l. In the on-line experiments, 4.6 mm diameter pieces cut from original EACD and stacked onto each other in a 9 mm long precolumn, and EnviCarb and CPP-50 packed in 10×2.0 mm I.D. precolumn, were tested, and 50–200 ml spiked water samples were preconcentrated. Because of the peak broadening caused by the strong sorption of the analytes on carbon, the carbon-packed precolumns were eluted by a separate stream of 0.1 ml/min acetonitrile which was mixed with the gradient LC eluent in front of the C18 analytical column. The final on-line procedure was also applied for the less polar propoxur, carbaryl and methiocarb. EnviCarb could not be used due to its poor pressure resistance. CPP-50 provided less peak broadening than EACD: peak widths were 0.1–0.3 min and R.S.D. of peak heights 4–14% (n = 3). In terms of analyte trapping efficiency on-line SPE-LC-UV with a CPP-50 precolumn also showed better performance than when Bondesil C18/OH or polymeric PLRP-S was used, but chromatographic resolution was similar. With the CPP-50-based system, detection limits of the test compounds were 0.05–1 μg/l in surface water.  相似文献   

20.
Coupling column liquid chromatography and gas chromatography on-line is becoming more important in analytical chemistry. Especially when large amounts of polar solvents can be introduced into the gas chromatograph without any problem, the technique will offer new possibilities. With a DPTMDS retention gap, evaporation rates and flooded zones of some solvents have been determined. Two modes of operation using partially concurrent solvent evaporation conditions are discussed: (1) injecting a sample via a loop of an LC valve followed by introduction into the gas chromatograph with an LC pump; (2) trace enrichment on a precolumn followed by on-line desorption with n-propanol into the gas chromatograph. Preliminary results for a splitter system, inserted between the retention gap and the analytical column which allows a considerable increase of the evaporation rate are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号