共查询到20条相似文献,搜索用时 11 毫秒
1.
The cathode spots from vacuum arcs on 316 stainless steel are compared with the tracks found on the same material after exposure to the plasma of the tokamak TFR 600. Further the erosion yields of vacuum arc cathodes of 316 stainless steel and titanium are determined from experiments and the measured values are compared with theoretical estimates. The velocity of the arc is investigated as a function of the applied magnetic cross-field. The scatter of both, the velocity data and the erosion yields is substantial. Improved experiments are planned. 相似文献
2.
A vacuum arc at high enough current can produce gross melting on electrode surfaces as a consequence of anode spot formation and other high-current electrode phenomena. Erosion from the electrodes under this condition is much more rapid than at low-current (where material loss occurs principally from the cathode) and is a process that is presently poorly understood. The present work is aimed at characterizing the erosion products from cathode and anode surfaces during high-current arcs on copper electrodes for single half cycles (60 Hz) arcs having peak currents of 30 kA. Fully open gap lengths were approximately 18 mm. Among the findings were the following. a) Erosion rate determined by electrode weight loss was approximately 8 mg/C of arcing. b) Droplets ejected from the electrodes had masses varying from a few tenths to a few tens of micrograms and velocities typically up to 40 m/s, although higher velocities are seen. c) The greatest number of droplets are produced at, or just after the current peak, and higher droplet velocities are seen in this same time interval. d) Erosion in vapor form detected in the plane of the cathode surface and moving radially is a maximum just after the peak of current and is relatively abundant. Such vapor is essentially absent in the anode plane. 相似文献
3.
A theoretical model for current interruption in a diffuse vacuum arc with dc commutation is described. Before current zero the interelectrode plasma is modeled as an ion-neutral fluid through which electrons are flowing. After current zero a positive ion sheath grows into the plasma from the former anode, driven by the transient recovery voltage. Using the basic laws of conservation, the decay of the plasma during commutation is evaluated numerically, enabling the post-arc current, the electric field at the former anode, and the power input to this electrode after current zero to be calculated. For copper electrodes, with a commutation time of 30 ?s, the ion density and velocity at current zero are 23 percent and 35 percent of their respective steady state values. The calculated post-arc currents of tens of amps are in good agreement with experimental data. The post-arc data generated with this model can be used to study reignition mechanisms and the interrupting capability of different contact materials. 相似文献
4.
The evaporation instability model for anode spot formation in high-current vacuum arcs shows one severe deficiency: it needs a critical vapor density at the anode, that is by two orders of magnitude higher than the measured value. The discrepancy can be bridged, if it is assumed that due to the relatively cool anode a low vapor pressure exists near the anode and thus the self magnetic field constricts the arc in the vicinity of the anode considerably. In consequence, the vapor density is higher near the anode than far away from that electrode. The mathematical analysis of that model shows that the predicted constriction near the anode exists indeed. The vapor density obtained at the anode surface is by more than two orders of magnitude higher than in the column and the absolute value is high enough to start the anode spot instability due to evaporation of the anode. The model shows that neither a pure magnetic constriction model nor a pure anode evaporation model can account for the effects observed, but that both effects contribute considerably to the phenomenon of anode spot formation in high-current vacuum arcs. 相似文献
5.
The cathode processes of electric ares on cleaned Cu cathodes were investigated in the transition region between vacuum and atmospheric pressure (argon). The plasma density in the cathode plane was estimated by probe measurements to be n = r are current, r – distance from the spot). It was observed that several cathode spot parameters have an extremum at p ~ 104 Pa. The crater diameter has a minimum independently of the cathode temperature. The diffusion constant of the chaotic motion determined by framing photographs was found to have a maximum. Some additional, large displacements occurred at that pressure. The diameter of the bright plasma cloud obtained by open-shutter photographs showed a maximum, the current per spot was found to decrease from 20 A in vacuum to 10 A at atmospheric pressure. It is thus concluded that the spot with the smallest crater radius and a low current per spot, occurring at ~ 104 Pa, represents the single spot, whereas the spot at higher pressures, and probably also in vacuum, has a complicated nature where the large craters are formed by a cooperation of single spots. 相似文献
6.
This paper reports about experimental investigations on high-current vacuum-arc phenomena, especially anode-spot formation, arc states, and motion. The presented work was stimulated by lack of information about the transition process from the diffuse low-current mode to the high-current mode characterized by anode spot(s). Optoelectronic measurements, streak photographs, high-speed movies, and correlated arc voltage/current records yielded remarkable results on power-frequency vacuum arcs. Three different high-current vacuum arc modes can be observed beyond a certain threshold current. Which mode appears depends mainly on the momentary electrode distance. The modes are characterized by different anode-spot behavior and interelectrode phenomena. The transition between different arc modes is continuous. The arc modes observed on ring electrodes producing a magnetic blast field are the same as those appearing on butt-type electrodes. Anode-spot formation is preceded by congregations of cathode spots and may be initiated by thermal overload of the anode surface opposite to these cathode-spot clusters. 相似文献
7.
This paper discusses arc modes at the anode, anode temperature measurments, anode ions, transitions of the arc into various modes (principally the anode-spot mode), and theoretical explanations of anode phenomena. A vacuum arc can exhibit five anode discharge modes: 1) a low-current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; 2) a second low-current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); 3) a footpoint mode, characterized by the appearance of one or more luminous spots on the anode (footpoints are much cooler than the true anode spots present in the last two modes); 4) an anode-spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and 5) an intense-arc mode where an anode spot is present, but accompanied by severe cathode erosion. The arc voltage is relatively low and quiet in the two low-current modes and the intense-arc mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode-spot mode. Anode erosion is low, indeed negative, in the two low-current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode-spot and intense-arc modes. 相似文献
8.
H. Craig Miller 《等离子体物理论文集》1989,29(3):223-249
This paper discusses are modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. A vacuum are can exhibit five anode discharge modes: (1) a low current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; (2) a second low current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); (3) a footpoint mode, characterized by the appearance of one or more small luminous spots on the anode (footpoints are generally much cooler than the true anode spots present in the last two modes); (4) an anode spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and (5) an intense are mode where an anode spot is present, but accompanied by severe cathode erosion. The are voltage is relatively low and quiet in the two low current modes and the intense are mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode spot mode. Anode erosion is low, indeed negative, in the two low current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode spot and intense are modes. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum are being considered. In specific experimental conditions, either magnetic constriction in the gap plasma, or gross anode melting, or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 相似文献
9.
We have measured the ion flux for different electrode materials in a vacuum arc. The vacuum arc has a point-plane geometry. The ion species in the generated plasma are identified using a time-of-flight (TOF) spectrometer. Ion species that have been generated to date include D+, Mg+, Mg++, Al+, Al++, Al+++, Ti+, Ti++, Ni+, Ni++, Cu+, Cu++, Zn+, Zn++, and In+. We found that in all cases, the ion flux measured is directly proportional to the interelectrode gap spacing and to the arc current. Typical current densities measured were ~300 mA · cm-2 at a distance of 10 cm from the gap for 150-?s pulse. The study will be used for the development of a multiple-arc array source for application to intense ion beam generation. 相似文献
10.
Yang D. Wang L. Jia S. Shi Z. Li Y. 《IEEE transactions on plasma science. IEEE Nuclear and Plasma Sciences Society》2010,38(2):206-213
11.
C. Wieckert 《等离子体物理论文集》1987,27(5):309-330
It was demonstrated in many experiments, that the expansion of the dense plasma of a vacuum arc spot goes along with an acceleration of multiply charged ions in the direction of the anode. The resulting plasma jet is analysed in a stationary and quasi-onedimensional model, that accounts for virtually all existing explanations. The corresponding system of multifluid equations includes singular points. The model is evaluated for two versions, that are suited to describe the cathodic jet and for which the singular points can be treated. The agreement with the experimentel results is satisfactory. It turns out, that the acceleration of the ions is mainly due to the electron-ion friction. The results indicate, that the study of the plasma jet is a suitable tool to get a more detailed knowledge of the cathode spot. 相似文献
12.
By mass spectrometry of residual gas in UHV-arc-chambers a cycle of production of methane has been found for clean electrodes, consisting in release of hydrogen during the arc, its re-adsorption on freshly formed metal surfaces, followed by surface reactions of hydrogen with carbon impurities, and finally desorption of the resulting methane at room temperature after the arc. Existing methane is decomposed in part during an arc. In the pressure region ≦ 10?4 Pa most of the residual gas is transformed to CH4 if the electrodes contain metals with high gettering activity. 相似文献
13.
14.
Recovery of dielectric strength and post-arc currents after diffuse and constricted vacuum arcs were measured for filat OFHC-Cu contacts (D = 25 mm, d = 7.5 mm) enclosed in a bakable UHV chamber. The arc current pulse had a trapezoidal shape of 5.5-ms duration with peak values up to 11 kA. In comparison with the fast recovery of diffuse arcs, the recovery of constricted arcs with gross melting is considerably retarded. Post-arc currents are simulated using the Andrews-Varey model extended to include the effects of secondary electron emission due to ion bombardment of the cathode and loss of the plasma due to thermal motion. The flow of charge carriers to the anode and the shield, which is at the anode's potential, are registered separately. The amount and decay of the residual plasma is evaluated from the measurements of post-arc current. The decay times of a few tens of a microsecond give evidence of ions with energies below 1 eV. The origin and effect of slow ions on recovery is discussed. 相似文献
15.
N. N. Bakharev F. V. Chernyshev V. I. Davydenko P. R. Goncharov V. K. Gusev G. S. Kurskiev A. D. Melnik V. B. Minaev M. I. Mironov M. I. Patrov Yu. V. Petrov N. V. Sakharov P. B. Shchegolev A. D. Sladkomedova A. Yu. Telnova S. Yu. Tolstyakov G. V. Zadvitskiy 《Technical Physics》2017,62(12):1812-1816
A high-energy counter-NBI has been applied for the first time on the Globus-M spherical tokamak. An ELM-free H-mode has been obtained. However, no significant increase in the ion temperature and plasma energy content compared to ELMy H-mode has been observed. This is due to a high level of the fastion losses. Neither increase in the plasma current nor an increase in plasma-wall distance resulted in an increase in NB heating efficiency as it occurred during the co-NBI experiments. 相似文献
16.
Retrograde velocity of vacuum arcs in transverse magnetic fields is known to depend on, among other things, the magnetic induction, the arc current, the electrode spacing, the cathode material, and the cathode surface condition, and was also found to depend on the cathode temperature. Using the optical method, the retrograde velocity was measured as a function of the cathode temperature with copper, aluminum, and stainless steel as cathode materials. The optical measurement shows that by increasing the cathode temperature, the arc velocity decreases. It appears that with the increase in the cathode temperature, the decrease of the arc velocity is related to the increase of the cathode crater radius. The experimentally measured temperature dependence of the retrograde velocity of vacuum arcs can be explained by the ion jet model for retrograde motion of vacuum arcs [10]. The relative decrease of retrograde velocity as a function of the cathode temperature calculated according to this model agrees quantitatively with the reported measurements. 相似文献
17.
Boxman Raymond L. Harris Jeffrey H. Bless Adam 《IEEE transactions on plasma science. IEEE Nuclear and Plasma Sciences Society》1978,6(3):233-237
The variation of threshold current for the transition between the low current quiescent vacuum arc mode, and the high voltage noisy mode associated with anode spot formation, was measured as a function of peak current, current waveform frequency, and electrode separation on fixed diameter (25 mm) Cu and Ni electrodes. At current waveform frequencies of about 60 Hz on Cu electrodes, the threshold current depends mainly on electrode spacing, as has been observed by other investigators. However, at higher waveform frequencies, the threshold current becomes a strong function of peak current as well. At 347 Hz on 25 mm. diam. Cu electrodes separated by 10 mm, the threshold current rose from approximately 2 kA to 5.5 kA, as the peak current rose from 2 kA to 6 kA. At 543 Hz on 25 mm diam Ni electrodes separated by 9 mm, a saturation in threshold current at about 7.5 kA was observed for peak currents greater than 9 kA. Simultaneous anode temperature measurements indicated that the Ni anode surface temperature immediately prior to transition rose from about 1550° K to 2250° K with variations of peak current from 5 kA to 13 kA. Predictions of the variation of threshold current based on random transitions, and on cathode spot migration over the edge of the cathode, are compared with the experimental data. 相似文献
18.
N. Vogel 《等离子体物理论文集》1989,29(1):11-24
The stepwise increase of the burning voltage of short break arcs has been found not only in a gas but also in vacuum. It is suggested that the effect is associated with the occurrence of a positive anode fall which enhances ionisation phenomena near the anode. This view is supported by the simultaneous registration of arc current, burning voltage, light emission from the anode region, of spectral lines of ions, atoms and continuum from the near anode plasma. The phenomena occur beyond a critical gap distance which can be related to the characteristic geometry of the discharge. 相似文献
19.
Vacuum consumable arc remelting is a casting process carried out in a vacuum with the aim of remelting the consumable electrode in such a way that the new ingot has improved chemical and physical homogeneity. The power which causes the melting is supplied by a vacuum arc burning between the electrodes. In order to determine the furnace partitions of electrical power and current, experiments were conducted on molten-faced round electrodes. The quasi-steady melt rate was determined for both horizontally opposed 15-cm-diameter Ni electrodes and for vertically suspended 40-cm-diameter Inconel 718 electrodes. The cathode thermal power is directly proportional to the melt rate which, for the horizontally opposed electrode experiment, agrees to within 10 percent with the Ni breaker switch calorimetry measurements and with predictions from retarded potential analyzer plasma data. However, for the vertically suspended electrode experiments, the measured thermal power at the cathode is 50 percent higher than for nickel. When CO is introduced into the vertical alloy electrode system and electrode gap is increased, the cathode thermal power is reduced by approximately 50 percent. Furthermore, the electrode position measurements and observation of the ingot surface suggest that a concentrated arc is formed under these conditions. 相似文献
20.
The final goal of fusion energy research is to make it economically competitive and the cost of electricity (COE) as low as acceptable by the energy market. Therefore the fusion plasma has to be operating with high power density and the plasma facing components (PFC), such as first wall and divertor, have to sustain high surface heat load and bombardment with high particle flux. Such rigorous environments consequentially lead to severe damage and erosion of PFC materials. As a result, the lifetime of PFC would be shortened. 相似文献