首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design, synthesis, characterization, and understanding of new molecular and macromolecular assemblies with large macroscopic optical nonlinearities represents an active field of research at the interface of modern chemistry, physics, and materials science. Challenges in this area of photonic materials typify an important theme in contemporary chemistry: to create new types of functional materials by the rational construction of supramolecular assemblies exhibiting preordained collective phenomena by virtue of “engineered” molecule–molecule interactions and spatial relationships. This review surveys several approaches to, and the microstructural and optical properties of, second-order nonlinear optical materials built from noncentrosymmetric assemblies of chromophores having large molecular hyperpolarizabilities. Such types of materials can efficiently double the frequency of incident light, exhibit other second-order nonlinear optical effects, and contribute to the knowledge base needed for new photonic device technologies. Systems described include chromophore macromolecule guesthost matrices, chromophore-functionalized glassy macromolecules, thermally crosslinked chromophore-macromolecule matrices, and intrinsically acentric self-assembled chromophoric superlattices.  相似文献   

2.
This paper discusses an approach to control molecular stacking interactions in low-dimensional mixed valence materials by locking partially oxidized metallomacrocycles together in a face-to-face orientation. Thus, doping of the cofacially linked oligomers [M(Pc)0]n (M = Si, Ge, Sn; Pc = phthalocyaninato) with halogen (I2, Br2) or quinone (e.g., TCNQ, DDQ) electron acceptors produces robust, electrically conductive polymers with a wide range of stoichiometrics and properties. The new materials have been studied by a variety of physical methods including X-ray diffraction, resonance Raman and infrared spectroscopy, ESR, static magnetic susceptibility, and variable-temperature four-probe electrical conductivity. Evidence is presented that some of the polymers have “metal-like” conductivity in the stacking direction and that transport properties within the series can be readily manipulated by rational variation of lattice architecture (e.g., the identity of the metal, M) and acceptor characteristics. Additional information is presented on doping experiments with electron donors and on employing metallohemiporphyrazines as polymer building blocks.  相似文献   

3.
Metal–organic frameworks (MOFs) have evolved as an exciting class of materials in the domain of porous materials. The unique features of these materials arise from the combined properties of metal ions/clusters and organic struts which form the building blocks of these fascinating architectures. Among other multifarious applications, MOFs have shown tremendous applications as sensory materials for a wide variety of species. The signal transduction induced mechanism in these confined nanospaces generate optical output in response to a particular analyte which can be detected by wide variety of detection techniques. Fluorometric methods of sensing is one of widely studied method over past few decades. MOF‐based fluorometric detection is a key research theme developed over the past few years. In this review, we give a brief overview of the recent developments of MOFs as “turn‐on” sensors for a wide range of analytes (viz. cations, anions, volatile organic compounds (VOCs), etc.).  相似文献   

4.
Solution self‐assembly of amphiphilic “rod‐coil” copolymers, especially linear block copolymers and graft copolymers (also referred to as polymer brushes), has attracted considerable interest, as replacing one of the blocks of a coil‐coil copolymer with a rigid segment results in distinct self‐assembly features compared with those of the coil‐coil copolymer. The unique interplay between microphase separation of the rod and coil blocks with great geometric disparities can lead to the formation of unusual morphologies that are distinctly different from those known for coil‐coil copolymers. This review presents the recent achievements in the controlled self‐assembly of rod‐coil linear block copolymers and graft copolymers in solution, focusing on copolymer systems containing conjugated polymers, liquid crystalline polymers, polypeptides, and polyisocyanates as the rod segments. The discussions concentrate on the principle of controlling over the morphology of rod‐coil copolymer assemblies, as well as their distinctive optical and optoelectronic properties or biocompatibility and stimuli‐responsiveness, which afford the assemblies great potential as functional materials particularly for optical, optoelectronic and biological applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1459–1477  相似文献   

5.
This research aims to develop schemes for the programmed assembly of molecular materials. The underlying premise guiding this work is that structural information stored in the molecular constituents dictates their condensed phase organization (i.e. through the sum of all non-covalent interactions). The challenge then is to design molecular building blocks that encode this information in a decipherable manner. Our approach has relied on the use of organic nanoarchitectures, which we believe will serve as “modular units” for programmed assembly. Large molecules of well defined constitution and geometry offer the advantage that a high level of information can be incorporated into a single unit. The design and synthesis of nanoscale macrocyclics and macrobicyclics for this purpose has been achieved. Studies on the solution aggregation of the macrocyclics have provided a unique opportunity to glimpse some of the interactions which may influence solid state ordering. These building blocks are being used for the rational design of novel materials such as porous organic crystals and tubular mesophases.  相似文献   

6.
The context of molecular structronics (from “molecular structure” and “electronics”) is that of molecular-level electrochemical storage of energy of sustainable origin (wind, solar). Due to its discontinuous availability, storage of this energy is a key issue. The targeted type of storage relies on implementing “electron reservoirs” within the structronic molecules by electrochemically forming dedicated chemical bonds according to non-catalytic processes. Reservoir bonds are therefore integral parts of the molecular backbone of structronic assemblies. When filled, electron reservoirs manifest themselves in the form of elongated covalent bonds that are to be cleaved for electron releasing (discharging) on demand. The scope of this short review is limited to pyridinium electrophores as particularly suited building blocks for the development of structronics.  相似文献   

7.
Silicon and its compounds have made possible the design of new materials, which, from computers to space travel, have helped to shape the technology of our 20th century. Conversely, the demands of new technology have stimulated the fast development of silicon chemistry as part of the “renaissance” of inorganic chemistry. This article uses selected examples of predominantly organosilicon compounds to discuss in simplified terms the measurement and assignment of suitable spectroscopic “molecular fingerprints” as well as the resulting benefit for the preparative chemist. The comparison of “equivalent” states of “chemically related” molecules is emphasized, based on perturbation arguments and supporting quantum-chemical models. Special attention is given to the relation between structure and energy, which allows us to understand and to predict the connectivity between and the spatial arrangement of silicon “building blocks”, the energy-dependent electron distribution over the effective nuclear potentials of a molecular framework, and, especially, the partly considerable effects of “silicon substituents” on molecular properties. Future-directed extensions and applications include polysilane band structures, Rydberg states of chromophores containing silicon centers, redox reactions and ion-pair formation of silicon-substituted π systems, and molecular dynamic phenomena in solution or on thermal fragmentation in the gas phase. The main objective is a set of clear and practical rules for interpreting measurements and planning experiments.  相似文献   

8.
Giant surfactants are polymer‐tethered molecular nanoparticles (MNPs) and can be considered as a subclass of giant molecules. The MNPs serve as functionalized heads with persistent shape and volume, which may vary in size, symmetry, and surface chemistry. The covalent conjugation of MNPs and polymer tails affords giant surfactants with diverse composition and architecture. Synthetic strategies such as “grafting‐from” and “grafting‐onto” have been successfully applied to the precise synthesis of giant surfactants, which is further facilitated by the emergence of “click” chemistry reactions. In many aspects, giant surfactants capture the essential features of small‐molecule surfactants, yet they have much larger sizes. They bridge the gap between small‐molecule surfactants and traditional amphiphilic macromolecules. Their self‐assembly behaviors in solution are summarized in this Review. Micelle formation is affected not only by their primary chemical structures, but also by the experimental conditions. This new class of materials is expected to deliver general implications on the design of novel functional materials based on MNP building blocks in the bottom‐up fabrication of well‐defined nanostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1309–1325  相似文献   

9.
Post‐functionalization of organically modified polyoxometalates (POMs) is a powerful synthetic tool to devise functional building blocks for the rational elaboration of POM‐based molecular materials. In this personal account we focus on iodoaryl‐terminated POM platforms, describe reliable routes to the synthesis of covalent organic‐inorganic POM‐based hybrids and their integration into advanced molecular architectures or multi‐scale assemblies as well as their immobilization onto surfaces. Valorisation of the remarkable redox properties of POMs in the fields of artificial synthesis and molecular electronic is especially considered.  相似文献   

10.
The formation of apoptosis‐inducing amyloidal structures by metabolites has significantly extended the “amyloid hypothesis” to include non‐proteinaceous, single metabolite building blocks. However, detection of metabolite assemblies is restricted compared to their larger protein‐based counterparts owing to the hindrance of external labelling and limited immunohistochemical detection tools. Herein, we present the detection of the formation, dynamics, and cellular distribution of metabolite amyloid‐like structures and provide mechanistic insights into the generation of supramolecular chromophores. Moreover, the intrinsic fluorescence properties allow the detection of metabolite assemblies in living cells without the use of external dyes. Altogether, this intrinsic fluorescence of metabolite assemblies further verifies their amyloidal nature, while providing an important tool for further investigation of their pathological role in inborn error of metabolism disorders.  相似文献   

11.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle‐like organizations. Using cryo‐TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution‐state” picture of how the micelle‐like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water‐soluble assemblies.  相似文献   

12.
The development of nanotechnology has led to the design of cutting‐edge nanomaterials with increasing levels of complexity. Although “traditional” solid, uniform nanoparticles are still the most frequently reported structures, new generations of nanoparticles have been constantly emerging over the last several decades. The outcome of this nano‐art extends beyond nanomaterials with alternative compositions and/or morphologies. The current state‐of‐the‐art allows for the design of nanostructures composed of different building blocks that exhibit diverse properties. Furthermore, those properties can be a reflection of either individual features, which are characteristic of a particular building block alone, and/or synergistic effects resulting from interactions between building blocks. Therefore, the unique structures as well as the outstanding properties of nanorattles have attracted increasing attention for possible biomedical and industrial applications. Although these nanoparticles resemble core–shell particles, they have a distinctive feature, which is a presence of a void that provides a homogenous environment for the encapsulated core. In this Review, we give a comprehensive insight into the fabrication of nanorattles. A special emphasis is put on the choice of building blocks as well as the choice of preparation method, because those two aspects further influence properties and thus possible future applications, which will also be discussed.  相似文献   

13.
Hierarchical structures are important for transferring and amplifying molecular functions to macroscopic properties of materials. In this regard, rodlike molecules have emerged as one of the most promising molecular building blocks to construct functional materials. Although the self-assembly of conventional molecules containing rodlike components generally results in nematic or layered smectic phases, due to the preferred parallel arrangements of rodlike components, extensive efforts have revealed that rational molecular design provides a versatile platform to engineer rich self-assembled structures. Herein, first successes achieved in polyphilic liquid crystals and rod–coil block systems are summarized. Special attention is paid to recent progress in the conjugation of rodlike building blocks with other molecular building blocks through the molecular Lego approach. Rod-based giant surfactants, sphere–rod conjugates, and dendritic rodlike molecules are covered. Future perspectives of the self-assembly of molecules containing rodlike components are also provided.  相似文献   

14.
Starburst dendrimers are three-dimensional, highly ordered oligomeric and polymeric compounds formed by reiterative reaction sequences starting from smaller molecules—“initiator cores” such as ammonia or pentaerythritol. Protecting group strategies are crucial in these syntheses, which proceed via discrete “Aufbau” stages referred to as generations. Critical molecular design parameters (CMDPs) such as size, shape, and surface chemistry may be controlled by the reactions and synthetic building blocks used. Starburst dendrimers can mimic certain properties of micelles and liposomes and even those of biomolecules and the still more complicated, but highly organized, building blocks of biological systems. Numerous applications of these compounds are conceivable, particularly in mimicking the functions of large biomolecules as drug carriers and immunogens. This new branch of “supramolecular chemistry” should spark new developments in both organic and macromolecular chemistry.  相似文献   

15.
A key reaction in the biological and material world is the controlled linking of simple (molecular) building blocks, a reaction with which one can create mesoscopic structures, which, for example, contain cavities and display specifically desired properties, but also compounds that exhibit typical solid-state structures. The best example in this context is the chemistry of host–guest interactions, which spans the entire range from three- and two-dimensional to one- and “zero-dimensional”, discrete host structures. Members of the class of multidimensional compounds have been classified as such for a long time, for example, clathrates and intercalation compounds. Thus far, however, there are no classifications for discrete inorganic host–guest compounds. The first systematic approach can be applied to novel polyoxometalates, a class of compounds which has only recently become known. Molecular recognition; tailor-made, molecular engineering; control of fragment linkage of spin organization and crystallization; cryptands and coronands as “cages” for cations, anions or anion–cation aggregates as sections of ionic lattices; anions within anions, receptors; host–guest interactions; complementarity, as well as the dialectic terms reduction and emergence are important terms and concepts of supramolecular inorganic chemistry. Of particular importance for future research is the comprehension of the mesoscopic area (molècular assemblies)—that between individual molecules and solids (“substances”)—which acts in the biological world as carrier of function and information and for which interesting material properties are expected. This area is accessible through certain variations of “controlled” self-organization processes, which can be demonstrated by using examples from the chemistry of polyoxometalates. The comprehension of the laws that rule the linking of simple polyhedra to give complex systems enables one to deal with numerous interdisciplinary areas of research: crystal physics and chemistry, heterogeneous catalysis, bioinorganic chemistry (biomineralization), and materials science. In addition, conservative self-organization processes, for example template-directed syntheses, are of importance for natural philosophy in the context of the question about the inherent properties of material systems.  相似文献   

16.
We report the synthesis of a hydrophilic copolymer with one polyethylene glycol (PEG) block and one β‐cyclodextrin (β‐CD) containing block by a “click” reaction between azido‐substituted β‐CD and propargyl flanking copolymer. 1H NMR study suggested a highly efficient conjugation of β‐CD units by this approach. The obtained copolymer was used as a host macromolecule to construct assemblies in the presence of hydrophobic guests. For assemblies containing a hydrophobic polymer, their size can be simply adjusted by simply changing the content of hydrophobic component. By serving as a guest molecule, hydrophobic drugs can also be loaded accompanying the formation of nanoparticles, and the drug payload is releasable. Therefore, the copolymer synthesized herein can be employed as a carrier for drug delivery.  相似文献   

17.
Molecular self-assembly has emerged as a powerful technology for the synthesis of nanostructured materials. In design of various molecular assemblies, hydrogen bonding is a preferably selected intra- or inter-molecular weak interaction in recent research by virtue of the directionality and specificity. The research for novel hydrogen bond building blocks that self-assembly into well defined structures is great important not only for gaining an understanding of the concepts of self-assembly but also for the design of new molecular materials. Pyrrolic amide moiety has one hydrogen bond acceptor (C =O) and two hydrogen bond donors (pyrrole NH and amide NH). By deliberately design, pyrrolic amide compounds would be new kinds hydrogen bond building blocks. So, pyrrolic amide compounds 1 ~ 6, which bear one, two or three pyrrolic amide moieties respectively, were designed and synthesized.  相似文献   

18.
Bipyridinium dications are versatile building blocks for the assembly of functional materials. In particular, their reliable electrochemical response has encouraged the design of electroactive films. Diverse and elegant experimental strategies to coat metallic and semiconducting electrodes with bipyridinium compounds have, in fact, emerged over the past two decades. The resulting interfacial assemblies span from a few nanometers to several micrometers in thickness. They incorporate from a single molecular layer to large collections of entangled polymer chains. They transport electrons efficiently from the electrode surface to the film/solution interface and vice versa. Electron self-exchange between and the physical diffusion of the bipyridinium building blocks conspire in defining the charge transport properties of these fascinating electroactive assemblies. Often, the matrix of electron-deficient bipyridinium dications can be exploited to entrap electron-rich analytes. Electrostatic interactions promote the supramolecular association of the guests with the surface-confined host matrix. Furthermore, chromophoric sites can be coupled to the bipyridinium dications to produce photosensitive arrays capable of harvesting light and generating current. Thus, thorough investigations on the fundamental properties of these functional molecule-based materials can lead to promising applications in electroanalysis and solar energy conversion, while contributing to advances in the basic understanding of electron transport in interfacial assemblies.  相似文献   

19.
Polyoxometalate (POM) clusters with atomic precision structures are promising candidates construct functional nanomaterials via self-assembly. Non-covalent interactions at molecular levels can govern the self-assembly of POM clusters, for which the precise control of POM-based assemblies can be realized at single-cluster levels. This mini-review focuses on the synthesis and properties of POM-based nanostructures, including amphiphilic POM assemblies and co-assemblies of POM clusters and other subnanometer building blocks. Several synthetic strategies have been developed for rational control of POM-based assemblies in terms of morphologies, compositions and properties. 1D subnanometer POM assemblies demonstrate remarkable enhanced mechanical properties due to the topological interactions between nanowires and surroundings. The in-depth understanding of POM-based assemblies may help in the design of functional nanomaterials in fundamental perspectives and applications.  相似文献   

20.
Engineering high‐recognition host–guest materials is a burgeoning area in basic and applied research. The challenge of exploring novel porous materials with advanced functionalities prompted us to develop dynamic crystalline structures promoted by soft interactions. The first example of a pure molecular dynamic crystalline framework is demonstrated, which is held together by means of weak “sticky fingers” van der Waals interactions. The presented organic‐fullerene‐based material exhibits a non‐porous dynamic crystalline structure capable of undergoing single‐crystal‐to‐single‐crystal reactions. Exposure to hydrazine vapors induces structural and chemical changes that manifest as toposelective hydrogenation of alternating rings on the surface of the [60]fullerene. Control experiments confirm that the same reaction does not occur when performed in solution. Easy‐to‐detect changes in the macroscopic properties of the sample suggest utility as molecular sensors or energy‐storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号