首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The Compound 2-(N-Formyl-N-prop-2′-inyl)aminopyridine was cyclised in boiling formic acid to 3-methylimidazo[1,2-a]pyridine, with 3-methylene-2H-imidazo[1,2-a]pyridine as the intermediate. Under similar conditions the 1,3-diprop-2-inylpyrimido[4,5-b]quinoline-2,4-dione resulted from 1-methylimidazo[1,2-a]quinoline-4-carbonic acid-N-2-prop-2′-inylamide and from the 1-prop-2′-inylbenzo[b][1,8]naphthyridin-2-one the 1-methylbenzo[b]imidazo[1,2,3-ij]naphthyridine-4,7-dione as a new ring system, was obtained.  相似文献   

2.
Treatment of 5-cyano-1,3-dimethyluracil ( 8 ) with an activated acetonitrile, such as malononitrile, ethyl cyanoacetate or cyanoacetamide, in base afforded 7-amino-6-cyano-, 7-amino-6-ethoxycarbonyl-, and 7-amino-6-aminocarbonyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione ( 18b, 18c and 18d , respectively) in high yields. On the other hand, reaction of 8 with acetonitrile in base gave the Michael adduct, 5-cyano-6-cyanomethyl-5,6-dihydrouracil ( 15 , R = H), and the hydrated product, 1,3-dimethyluracil-5-carboxamide ( 9 ) as the major products, and 7-amino-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione ( 18a ) in only very low yield. Similar reaction with butanone gave 7-ethyl-1,3-dimethyl- and 1,3,6,7-tetramethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione ( 10b and 10c ) in low yields. When 8 was treated with diethylmalonate in base, only a small amount of 6-ethoxycarbonyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4,7(1H,3H,8H)-trione ( 19 ) was obtained together with 1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione ( 20 ) and 18c (also in low yields). Treatment of 8 in ethanolic sodium ethoxide without added carbon nucleophile gave significant amounts (14%) of 20 and a small amount of 18c .  相似文献   

3.
Synthesis of 1,3-dipropyl-1H,3H-pyrazino, pyrido, pyrimido and pyrrolo[2,1-f]purine-2,4-diones, starting from 5,6-diamino-1,3-dipropylpyrimidine-2,4-dione 1 and 6-chloro-1,3-dipropylpyrimidine-2,4-dione 14 is described. A new synthetic approach to 1,3-dipropyl-1H,3H-pyrido(or pyrazino)[1′,2′-1,2]pyrimido[4,5-d]pyrimidine-2,4,5-triones 19 e, f, h has been also developed.  相似文献   

4.
Themolysis of naphth[1,2-d]imidazo[2,1-b]thiazole-2,3-dione ( 1 ) in dimethylformamide gave an intermediate 2-isocyanatonaphtho[1,2-d]thiazole ( 2 ), which underwent [4 + 4] cyclodimerization to yield dinaphtho-[1″,2″:4,5;1′″,2′″:4′,5′]dithiazolo[3,2-a:3′,2′-e]-1,3,5,7-tetrazocine-9,19-dione ( 3 ). The possible [4 + 2] cycloadduct, 3-(2-naphtho-[1,2-d]-thiazolyl)naphtho[1′,2′:4,5]thiazolo[3,2-a]-1,3,5-triazine-2,4-dione ( 4 ), an usual dimer type of heterocyclic isocyanates was not produced. Discrimination between the two isomers was established on the basis of spectral analyses.  相似文献   

5.
A reaction of 5-cyano-1,3-dimethyluracil (1, R = CN) with acetone in base afforded 1,3,7-trimethylpyrido-[2,3-d]pyrimidine-2,4(1H,3H)dione ( 9a ) in a moderate yield. From a reaction mixture of 1 (R = CN) with butanone, 1,3,6,7-tetramethyl- and 7-ethyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione ( 9b and 9c , respectively) were isolated in low yields. When ethyl cyanoacetate or malononitrile was used in place of the ketone in the above reaction, 7-amino-6-ethoxycarbonyl- and 7-amino-6-cyano-1,3-dimethylpyrido[2,3-d]-pyrimidine-2,4(1H,3H)-dione ( 14a and 14b , respectively) were obtained in quantitative yields. A plausible mechanism for the formation of bicyclic compounds is discussed.  相似文献   

6.
Heating of 6-amino-1,3-dimethyluracil with hexafluoroacetone and ethyl trifluoropyruvate benzoylimines in DMF in the presence of Et3N results in 1,3-dimethyl-7-phenyl-5,5-bis(trifluoromethyl)-1,2,3,4,5,8-hexahydropyrimido[4,5-d]pyrimidine-2,4-dione and 5-benzoylamido-1,3-dimethyl-5-trifluoromethyl-1,2,3,4,5,6-hexahydropyrrolo[2,3-d]pyrimidine-2,4,6-trione, respectively.  相似文献   

7.
The utility of certain 5-alkynyloxy-, 5-alkynylthio, and 5-alkynylsulfinyl-pyrimidines as precursors of 7-substituted furo[3,2-d]- and thieno[3,2-d]pyrimidines has been examined. When treated with sodium methoxide in warm methyl sulfoxide, 1,3-dimethyl-5-(2-propynyloxy)uracil ( 6 ) cyclizes to afford 1,3,7-tri-methylfuro[3,2-d]pyrimidine-2,4-(1H,3H)-dione ( 12 ) in 52% yield, possibly via the allenic ether 9 (R = H). The corresponding 5-(2-butynyloxy)pyrimidine ( 7 ), obtained in good yield by treating 6 with methyl iodide and sodium hydride in methyl sulfoxide, fails to undergo an analogous cyclization. However, compound 7 does undergo a normal alkynyl Claisen rearrangement and cyclization when heated at 130°, giving the 8-methylpyrano[3,2-d]pyrimidine 8 in methyl sulfoxide and the 6,7-dimethylfuro[3,2-d]pyrimidme 11 in dimethylformamide. The 5-(2-propynylthio)pyrimidine 15 affords the allene 19 and the 1-propyne 22 when treated with various bases, but none of the 7-methylthieno[3,2-d]pyrimidine 16. At 145° in methyl sulfoxide, 15 undergoes a thio-Claisen rearrangement process to afford the 6-methylthieno[3,2-d]pyrimidine 17 together with substantial amounts of a product 20 that bears a 7-thiomethoxymethyl substituent derived from the solvent. Heating the 5-(2-propynylsulfinyl)pyriniidine 23 at 105° in methyl sulfoxide, followed by acidification of the reaction mixture, affords 1,3-dimethyl-7-formylthieno[3,2-d]pyrimidine-2,4-(1H,3H)-dione ( 29 ) in 47% yield. Deuterium labelling studies established that the aldehyde proton of 29 is derived from the 3′-proton of 23 . This finding is consistent with a mechanism that involves sequential [2,3] and [3,3] sigma-tropic rearrangements, and the intermediacy of a dihydrothieno[3,2-d]pyrimidine such as compound 30.  相似文献   

8.
Versatile 2-thioxopyrimidine-type building blocks ethyl 3-(2-ethoxy-2-oxoethyl)- 4 -oxo-2-thioxo-1,2,3,4,5,6,7,8-octahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7-carboxylate ( 4 ) and ethyl 4-oxo-2-thioxo-1,2,3,4,5,6,7,8-octahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7-carboxylate ( 8 ) were synthesized from diethyl 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3,6-dicarboxylate ( 1 ). Derivatives of linear and angular heterocyclic systems having the imidazole and 1,2,4-triazole ring were obtained from the key intermediates 4 and 8 , respectively.  相似文献   

9.
Reactivities of 5-dimethylaminomethylene-6-imino-1,3-dimethyluracil hydrochloride ( 1 ) toward a variety of active methylene compounds 2 and 5 were investigated. Treatment of 1 with active methylene compounds such as malononitrile and ethyl cyanoacetate in the presence of triethylamine gave pyrido[2,3-d]pyrimidine-2,4-dione derivatives 3. Reaction of 1 with barbituric acids resulted in the formation of pyrido[2,3-d:6,5-d′]di-pyrimidine-2,4,6,8-tetrone derivatives 6.  相似文献   

10.
2,4-Diamino-5,7-dihydro-6H-thiopyrano[4′,3′:4,5]thieno[2,3-d]pyrirnidine, 2,4-diamino-9H-mdeno[1′,2′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-5H-indeno[2′,1′:4,5]thieno[2,3-d]pyrimidine, 9,11-diamino-5,6-dihydronaphtho[1′,2′:4,5]thieno[2,3-d]pyrimidine, 7,9-diamino-5,6-dihydronaphtho[2′,1′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-7-benzy]-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine, and various 2,4-diamino-5,6,7,8-tetrahydro-[1]benzothieno[2,3-d]pyrimidines were synthesized by cyclization of the requisite fused 2-aminothio-phenene-3-carbonitriles utilizing chloroformamidine hydrochloride in diglyme. Several compounds exhibited strong inhibitory effects against Streptococcus faecalis (MGH-2), Staphylococcus aureus (UC-76), Streptococcus faecium (ATCC 8043), Lactobacillus casei (ATCC 7469), and Pediococcus cerevisiae (ATCC 8081) in vitro, and three compounds displayed antimalarial activity against Plasmodium berghei in mice and P. falciparum (Uganda I) in vitro.  相似文献   

11.
The reaction of 6-amino-1,3-dimethylpyrrolo[3,4-d]pyrimidine-2,4-dione with 1,3-diketones leads to formation of predominantly pyrimido[4',5':3,4]pyrrolo[1,2-b]pyridazine-2,4(1H,3H)-diones and, to a lesser extent, pyrimido[5',4':3,4]pyrrolo[1,2-b]pyridazine-1,3(2H,4H)-diones. The ease and direction of the cyclization reaction suggests a very -electron rich pyrrole ring in the initial state, especially in the position 7.  相似文献   

12.
An efficient and facile method for the synthesis of 5-arylindeno[2′,1′:5,6]pyrido[2,3-d] pyrimidine-2,4(3H)-dione and 7-arylbenzo[h]pyrimido[4,5-b]quinoline-8,10(5H,9H)-dione derivatives from the reactions of 2-arylidene-2,3-dihydroinden-1-one (or 2-arylidene-3,4- dihydronaphthalen-1(2H)-one) and 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione under mild conditions was described. This is a simple, efficient, and very rapid synthetic method, which is believed to provide a useful process for the synthesis of these fused heterocyclic compounds. The products were confirmed by infrared, 1H NMR, 13C NMR, and high-resolution mass spectrometry.  相似文献   

13.
The synthesis of the congeners of uridine and cytidine in the pyrazolo[4,3-d]pyrimidine and pyrrolo[3,2-d]-pyrimidine ring system is described. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[4,3-d)pyrimidine-5,7(1H,4H,6H)-dione (4) with either 1-bromo- or 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose 5 and 6 , respectively in the presence of a Lewis acid catalyst gave the protected nucleoside 7 , which on debenzoylation afforded the uridine analogue 4-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidine-5,7(1H,6H)-dione (8). Thiation of 7 gave 13 , which on deprotection yielded 4-β-D-ribofuranosyl-5-oxopyrazolo[4,3-d]pyrimidine-7(1H,-6H)-thione (14). Ammonolysis of 13 gave a low yield of the cytidine analogue 15. A chlorination of 7 , followed by amination furnished an alternative route to 15. A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride (16) gave mainly the N4 glycosylated product 17 , which on debenzylation furnished 4-β-D-arabinofuranosylpyrazolo[4,3-d]pyrimidine-5,7(1H,6H)-dione (18). 7-Amino-4-β-D-arabinofuranosylpyrazolo[4,3-d]pyrimidin-5(1H)-one (23) was prepared from 17 via the pyridinium chloride intermediate 21. Condensation of the TMS derivative of pyrrolo[3,2-d]pyrimidine-2,4(1H,3H,5H)-dione (24) with 6 , followed by deprotection of the reaction product gave 1-β-D-ribofuranosylpyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (26). Similarly, TMS-24 was reacted with 16 to give a mixture of the blocked nucleosides 31 and 32 , which on debenzylation afforded a mixture of two isomeric compounds 34 and 35. 1-β-D-Arabinofuranosylpyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (34) was converted to the ara-C analogue 38 via the 3-nitrotriazolyl intermediate 36. The structure of 38 was confirmed by single crystal X-ray diffraction studies.  相似文献   

14.
The reaction of 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione with various alkenes or terminal alkynes in the presence of cerium(IV) ammonium nitrate (CAN) afforded the corresponding 5,6-dihydrofuro[2,3-d]pyrimidine-2,4(1H,3H)-diones or furo[2,3-d]pyrimidine-2,4(1H,3H)-diones in moderate to good yields.  相似文献   

15.
Several 6-substituted thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives were synthesized. 6-Ethoxycarbonyl derivatives 3 and 7 were prepared by treatment of 6-chloro-5-formyluracil 1 and 6-chloro-5-cyanouracil 6 with ethyl 2-mercaptoacetate in the presence of a base. Electrophilic substitution reactions (Vilsmeier-Haack reaction, bromination, and nitration) of 5,6-unsubstituted thieno[2,3-d]pyrimidine 9 , prepared by condensation of 6-mercaptouracil 8 with chloroacetaldehyde, afforded the corresponding 6-formyl-, 6-bromo-, and 6-nitrothieno[2,3-d]pyrimidines 10, 15 and 16 , respectively.  相似文献   

16.
The conversion of 2-acylamino-3-amino-1,4-naphthoquinones (II) to the corresponding 2-substituted 1H-naphth[2,3-d]imidazole-4,9-diones (I) under both alkaline and acid catalyzed conditions has been effected and the results compared. Treatment of 3-(4′-chlorobutanonyl-amino)-3-amino-1,4-naphthoquinone (He) with aqueous ethanolic sodium hydroxide solution gives 1,2-butanonaphth[2,3-d]imidazole-4,9-dione (V); whereas, treatment of lie with refluxing formic acid gave 2-(4′-chlorobutyl)-1H-naphth[2,3-d]imidazole-4,9-dione. Treatment of 2-substi-tuted 1H-naphth[2,3-d]imidazole-4,5-diones in DMF with alkyl halides in the presence of potassium carbonate affords the expected 1,2-disubstituted naphth[2,3-d]imidazole-4,9-diones (VI). The spectral properties of I, II, V and VI as well as those of some 2-acylamino-3-chloro-1,4-naphthoquinones IV are discussed.  相似文献   

17.
A new synthesis of certain pyrimido[5,4-e]-as-triazine 4-oxides and their ring transformation to pyrrolo-[3,2-d]pyrimidines by the 1,3-dipolar cycloaddition reaction is described. Thus, reaction of 6-hydrazino-1,3-dimethyluracil ( 1 ) with triethyl orthoformate gave 6-ethoxymethylenehydrazino-1,3-dimethyluracil ( 2 ). Treatment of 2 with arylamines gave 6-arylaminomethylenehydrazino-1,3-dimethyluracils ( 3a-e ). Nitrosative cyclization of 3a-e with sodium nitrite afforded 3-arylaminofervenulin 4-oxides ( 6a-e ). Reaction of 6a-e with acetylenic esters yielded 7-alkoxycarbonyl-6-arylamino-1,3-dimethylpyrrolo[3,2-d]pyrimidine-2,4(1H,3H-diones ( 15a-e and 16 ).  相似文献   

18.
Diethyl thiopyrano[2,3-d]pyrimidine-6,7-dicarboxylates 2a, b ; thiopyrano[23-d]pyrimidines 3a-c and 4a-c thieno[2,3-d]pyrimidine-6-carbonitriles 5a-c and thieno[2, 3-d]pyrimidine-6-carboxamides 5d-f have been prepared.  相似文献   

19.
5-Hydroxy-7-alkyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitriles (VIIb-d) and 5-hydroxy-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid, ethyl ester (VIIa) were prepared from 5-carbethoxy-4-chloro-2-phenylpyrimidine (IV) via 4-[(cyanomethyl)alkylamino[-2-phenyl-5-pyrimidinecarboxylic acid, ethyl esters (Vb-d) and 4-[(carboxymethyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid, diethyl ester (Va), respectively. The hydroxy group of the pyrrolo-[2,3-d]pyrimidines could be methylated, acetylated and tosylated. Hydrolysis of 5-methoxy-7-methyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitrile (IX) afforded the corresponding amide (X).  相似文献   

20.
Summary.  Treatment of 5-amino-6-cyclohex-2-enyl-1, 3-dimethyl-uracil with pyridinium hydrotribromide or hexamethylenetetrammonium hydrotribromide furnished the corresponding linear heterocyclic 6-bromo-1, 3-dimethylhexahydroindolo[3,2-d]pyrimidine-2, 4-diones in 90% yield. Reaction of the same educt with molecular bromine in chloroform afforded the bicyclic 9-bromo-1, 3-dimethylhexahydrobicyclo[3.3.1]indolo[3,2-d]pyrimidine-2, 4-diones in 85% yield. Upon treatment of the above substrate with cold concentrated sulfuric acid, a mixture of 1, 3-dimethylhexahydro-indolo[3, 2-d]pyrimidine-2, 4-dione (28%) and 1, 3-dimethylhexahydrobicyclo[3.3.1]indolo[3, 2-d]pyrimidine-2, 4-dione (60%) was obtained. Received August 4, 2000. Accepted (revised) November 15, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号