首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical∕molecular mechanical (QM∕MM) calculations at the MP2∕aug-cc-pVQZ level on a B3LYP∕aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM∕MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM∕MM multipoles is much closer than that from the site models to the potential from the QM∕MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment.  相似文献   

2.
Currently, all standard force fields for biomolecular simulations use point charges to model intermolecular electrostatic interactions. This is a fast and simple approach but has deficiencies when the electrostatic potential (ESP) is compared to that from ab initio methods. Here, we show how atomic multipoles can be rigorously implemented into common biomolecular force fields. For this, a comprehensive set of local reference axis systems is introduced, which represents a universal solution for treating atom‐centered multipoles for all small organic molecules and proteins. Furthermore, we introduce a new method for fitting atomic multipole moments to the quantum mechanically derived ESP. This methods yields a 50–90% error reduction compared to both point charges fit to the ESP and multipoles directly calculated from the ab initio electron density. It is shown that it is necessary to directly fit the multipole moments of conformational ensembles to the ESP. Ignoring the conformational dependence or averaging over parameters from different conformations dramatically deteriorates the results obtained with atomic multipole moments, rendering multipoles worse than partial charges. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The treatment of electrostatic interactions between molecular groups is based on quantum mechanical electron density distributions. A general method is suggested using tesseral harmonic multipole expansions and representing each set of point multipoles by a cluster of discrete charges small with respect to atomic dimensions. The procedure is carried out for the amino group with an electron density derived from the wave function of ammonia. We evaluate the optical rotation of two aminopyrrolidones as a test case. Expansions are compared for several approximate wave functions for ammonia.  相似文献   

4.
《Chemical physics letters》1987,140(2):120-123
The electronic structure of corundum (α-Al2O3) is calculated at the ab initio Hartree-Fock level. Cohesive energy, total and projected densities of states, atomic multipoles, bond populations and electron charge density distribution maps are given. The oxygen-aluminium bond is found to be partially covalent in nature; the atomic charges are −0.73 e and +1.09 e for O and Al respectively.  相似文献   

5.
Important explosives of practical use are composed of nitroaromatic molecules. In this work, we optimized geometries and calculated the electron density of 17 nitroaromatic molecules using the Density Functional Theory (DFT) method. From the DFT one-electron density matrix, we computed the molecular charge densities, thus the electron densities, which were then decomposed into electric multipoles located at the atomic sites of the molecules using the distributed multipole analysis (DMA). The multipoles, which have a direct chemical interpretation, were then used to analyze in details the ground state charge structure of the molecules and to seek for correlations between charge properties and sensitivity of the corresponding energetic material. The DMA multipole moments do not present large variations when the size of the Gaussian basis set is changed; the largest variations occurred in the range 10-15% for the dipole and quadrupole moments of oxygen atoms. The charges on the carbon atoms of the aromatic ring of each molecule become more positive when the number of nitro groups increases and saturate when there are five and six nitro groups. The magnitude and the direction of the dipole moments of the carbon atoms, indicators of site polarization, also depend on the nature of adjacent groups, with the largest dipole value being for C-H bonds. The total magnitude of the quadrupole moment of the aromatic ring carbon atoms indicates a decrease in the delocalized electron density due to an electron-withdrawing effect. Three models for sensitivity of the materials based on the DMA multipoles were proposed. Explosives with large delocalized electron densities in the aromatic ring of the component molecule, expressed by large quadrupole values on the ring carbon atoms, correspond to more insensitive materials. Furthermore, the charges on the nitro groups also influence the impact sensitivity.  相似文献   

6.
We review the theoretical work 1971–1997 of H.K. Tseng on low energy pair production. In this work numerical calculations were performed in independent particle approximation in a screened self-consistent central potential, expanding the S-matrix element in partial waves and multipoles. Sampling techniques in partial waves and multipoles were used to extend the calculations to higher energies (up to 10 Mev). Total cross sections, the positron energy spectrum, the positron angular distributions, and the positron–photon polarization correlations were studied. Agreement was obtained with most experiments, although some anomalies remained at the lowest energies (particularly at 1082 keV). Atomic screening of the nuclear charge decreases cross sections at higher energies, as described by a form factor in the momentum transfer to the nucleus. In an intermediate energy regime point Coulomb results in a shifted energy spectrum may be used. At low energies screening increases cross sections, and this is characterized in terms of a normalization screening factor which describes the change in magnitude of electron and positron wave functions at small distances. In this low energy regime angular distribution shapes and polarization correlations are independent of screening.  相似文献   

7.
8.
We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities—it is not limited to Hartree–Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.  相似文献   

9.
The structural, electronic, mechanical and dynamical properties of new members of MAX family (Hf2XY, X=Al, Si, P and Y= B, C, N compounds) with Cr2AlC-type structure have been investigated by first-principles density functional plane-wave pseudopotential calculations within generalized gradient approximation. From calculated cohesive energies, all compounds are energetically stable. And, from calculated elastic constants and phonon dispersion curves, it is shown that all compounds are mechanically stable, while the boron including ones are dynamically unstable except for Hf2PB. At the same time, related mechanical properties such as bulk and shear moduli are calculated. For further mechanical characterization, hardnesses of the compounds are determined theoretically. It is observed from electronic structure calculations including band structure and partial density of states, all stable compounds are metallic. Additionally, bonding nature of the compounds are analyzed by using 3D and 2D electron density maps, Mulliken atomic charges and bond overlap populations.  相似文献   

10.
Effects of nanoscale confinement and partial charges that stem from quantum calculations are investigated in silica slit channels filled with 1 M KCl at the point of zero charge by using a hierarchical multiscale simulation methodology. Partial charges of both bulk and surface atoms from ab initio quantum calculations that take into account bond polarization and electronegativity are used in molecular dynamics (MD) simulations to obtain ion and water concentration profiles for channel widths of 1.1, 2.1, 2.75, and 4.1 nm. The interfacial electron density profiles of simulations matched well with that of recent X-ray reflectivity experiments. By simulating corresponding channels with no partial charges, it was observed that the partial charges affect the concentration profiles and transport properties such as diffusion coefficients and mobilities up to a distance of about 3 sigma(O)(-)(O) from the surface. Both in uncharged and partially charged cases, oscillations in concentration profiles of K(+) and Cl(-) ions give rise to an electro-osmotic flow in the presence of an external electric field, indicating the presence of an electric double layer at net zero surface charge, contrary to the expectations from classical continuum theory. I-V curves in a channel-bath system using ionic mobilities from MD simulations were significantly different for channels with and without partial charges for channel widths less than 4.1 nm.  相似文献   

11.
We describe new developments of an earlier linear scaling algorithm for ab initio quality macromolecular property calculations based on the adjustable density matrix assembler (ADMA) approach. In this approach, a large molecule is divided into fuzzy fragments, for which quantum chemical calculations can easily be done using moderate-size "parent molecules" that contain all the local interactions within a selected distance. If greater accuracy is required, a larger distance is chosen. With the present extension of this approximation, properties of the large molecules, like the electron density, the electrostatic potential, dipole moments, partial charges, and the Hartree-Fock energy are calculated. The accuracy of the method is demonstrated with test cases of medium size by comparing the ADMA results with direct quantum chemical calculations.  相似文献   

12.
A model for the mutual polarization of two approaching molecules is proposed, exploiting the principle of electronegativity equalization. The deformation of the electronic density of one molecule is the response to the perturbation of its chemical potential due to the electrostatic potential of the other molecule. The electronic densities, the density deformations, and the electrostatic potentials of both molecules are described with a previously developed asymptotic density model (ADM ). The ADM model allows a partitioning of all relevant properties in terms of atomic quantities. The perturbation of the chemical potential is given in atomic resolution, and the change of the electronic density is represented in terms of atomic charges. A hardness tensor, which determines the changes of the atomic chemical potentials due to the changes of the atomic charges, is modeled consistently with the ADM and earlier approaches. The results of the model, the changes of atomic charges within the molecules due to their mutual interaction, are compared with the changes of atomic charges obtained from population analysis of ab initio calculations. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
14.
15.
Suzuki cross-coupling reactions have afforded 20-phenyl-substituted Chlorophyll a derivatives (ZCPh) in good yields and significant quantities from readily available Chl a. A series of donor-acceptor dyads was synthesized in which naphthalene-1,8:4,5-bis(dicarboximide) or either of two perylene-3,4:9,10-bis(dicarboximide) electron acceptors is attached to the para position of the 20-phenyl group. Comparisons with the analogous dyads based on a zinc 5,10,15-tri(n-pentyl)-20-phenylporphyrin donor show that, for a given acceptor and solvent, the rates of photoinduced charge separation and recombination as well as the calculated electronic coupling matrix elements, V, for these reactions differ by less than a factor of 2. However, EPR and ENDOR spectroscopy corroborated by DFT calculations show that the highest occupied MO of ZCPh+* has little spin (charge) density at the 20-carbon atom, whereas Z3PnPh+* has significant spin (charge) density there, implying that V, and therefore the electron-transfer rates, should differ significantly for these two macrocyclic donors. DFT calculations on ZCPh+* and Z3PnPh+*, with two -0.5 charges located where the nearest carbonyl oxygen atoms of the acceptor would reside in the donor-acceptor dyads, show that the presence of the negative charges significantly shifts the charge density of both ZCPh+* and Z3PnPh+* from the macrocycle onto the phenyl rings. Thus, the presence of adjacent covalently linked radical anions at a fixed location relative to each of these radical cations results in nearly identical electronic coupling matrix elements for electron transfer and therefore very similar rates.  相似文献   

16.
Interaction energies are a function of the molecular charge distribution. In previous work, we found that the set of atomic partial charges giving the best agreement with experimental vacuum dipole moments were from density functional theory calculations using an extended basis set. Extension of such computations to larger molecules requires an atomic partial charge calculation beyond present computational resources. A solution to this problem is the calculation of atomic partial charges for segments of the molecule and reassociation of such fragments to yield partial charges for the entire molecule. Various partitions and reassociation methods for five molecules relevant to HIV-1 protease inhibitors are examined. A useful method of reassociation is introduced in which atomic partial charges for a large molecule are computed by fitting to the combined electrostatic potential calculated from the fragment partial charges. As expected, the best sites for partitions are shown to be carbon—carbon rather than carbon—nitrogen bonds. © 1997 by John Wiley & Sons, Inc.  相似文献   

17.
Summary We propose a new criterion for defining partial charges on atoms in molecules, namely that physical observables calculated from those partial charges should be as accurate as possible. We also propose a method to obtain such charges based on a mapping from approximate electronic wave functions. The method is illustrated by parameterizing two new charge models called AM1-CM1A and PM3-CM1P, based on experimental dipole moments and, respectively, on AM1 and PM3 semiempirical electronic wave functions. These charge models yield rms errors of 0.30 and 0.26 D, respectively, in the dipole moments of a set of 195 neutral molecules consisting of 103 molecules containing H, C, N and O, covering variations of multiple common organic functional groups, 68 fluorides, chlorides, bromides and iodides, 15 compounds containing H, C, Si or S, and 9 compounds containing C-S-O or C-N-O linkages. In addition, partial charges computed with this method agree extremely well with high-level ab initio calculations for both neutral compounds and ions. The CM1 charge models provide a more accurate point charge representation of the dipole moment than provided by most previously available partial charges, and they are far less expensive to compute.  相似文献   

18.
This article reports the proton tautomerization effects of distal histidine residues in carbonmonoxy myoglobin according to the density functional calculations of the whole protein. The electron eigenstates and electrostatic potential (ESP) distributed around heme and its pocket vary significantly depending on the protonation positions of the distal histidine residues. To investigate the range over which the electronic structures are affected by the proton tautomerization, the quantum mechanics/molecular mechanics (QM/MM) method is applied to probe the QM size to reproduce the atomic partial charges and ESP around the active center. Consequently, we show that these properties converged for the 300 pm QM/MM system in this study. During the analysis, we also find that amino residues such as Phe43, Val68, and Phe138 interact strongly with heme through orbital mixing, indicating that the protein is a medium not only interacting with the reaction center, but also buffering on electrons. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
polarization energy of the localized charge in organic solids consists of electronic polarization energy, permanent electrostatic interactions, and inter/intra molecular relaxation energies. The effective electronic polarization energies for an electron/hole carrier were successfully estimated by AMOEBA polarizable force field in naphthalene molecular crystals. Both electronic polarization energy and permanent electrostatic interaction were in agreement with the preview experimental values. In addition, the influence of the multipoles from different distributed mutipole analysis (DMA) fitting options on the electrostatic interactions are discussed in this paper. We found that the multipoles obtained from Gauss-Hermite quadrature without diffuse function or grid-based quadrature with 0.325 Å H atomic radius will give reasonable electronic polarization energies and permanent interactions for electron and hole carriers.  相似文献   

20.
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号