首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naphthalene excited dimer (excimer) fluorescence is observed in the presence of β- and γ-cyclodextrin (CD) at elevated naphthalene (NAP) concentrations (100 μM) but not at low NAP concentrations (5 μM). This is attributed to formation of 2:2 CD:NAP complexes in the former situation. Complexes of NAP with hydroxypropyl β-CD are exclusively 1:1 and no excimer emission is observed. Complexes of NAP with α-CD do not show excimer emission either but the complex stoichiometry is 2:1 CD:NAP in this case. The formation constants for both the 1:1 and 2:2 β-CD:NAP complexes have been determined and they have been found to depend on the ionic strength of the salting out agent NaCl. K1:1 = 377 ± 35 M-1 in the absence of salt and 657 ± 60 M-1 at 1 M NaCl. The corresponding values for K2:2 are (1.0 ± 0.2) × 104 and (4.0 ± 0.5) × 104 M-1, respectively. Stern-Volmer fluorescence quenching studies of the 1:1 and 2:2 species by water-based quenchers (NaI and CsBr) show that both types of complexes protect the fluorophore from the quencher. However, the more completely encapsulated NAP in the 2:2 complex is protected to a greater extent. This is also the case for the 2:2 γ-CD:NAP complex. This protective effect is reflected in the observed rate constants for NAP quenching. For example, kQ = 7.1 × 109 M-1 s-1 for NaI in the absence of CD. This is reduced to 2.1 × 109 M-1 s-1 for the 1:1 complex and 1.2 × 109 M-1 s-1 for the 2:2 complex when 10 mM β-CD is present. A similar pattern is observed for CsBr as quencher. The 2:2 complexes are disrupted in the presence of additives such as linear alcohols and surfactants. The implications of these results for application of CDs for drug stabilization are discussed.  相似文献   

2.
Wade DA  Tucker SA 《Talanta》2000,53(3):571-578
Pyridinium chloride (PC) is examined as a selective, fluorescence quenching agent for alternant as opposed to nonalternant polycyclic aromatic hydrocarbons (PAHs) in two polar solvents - water and acetonitrile. Nine alternant and 13 nonalternant PAHs were dissolved in water and acetonitrile and a total of 0.2 M of pyridinium chloride was added. The resulting change in fluorescence intensity was observed and reported as the Stern-Volmer quenching constant. Results show that PC is a selective quencher in both polar solvents. It selectively quenches the fluorescence emission intensity of alternant PAHs while leaving the nonalternant PAH fluorescence emission virtually unchanged. These results agree with the selective quenching behavior seen for PC surfactant analogs, cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DDPC). Furthermore, these results illustrate that the presence of a surfactant or micelle is not a requirement for selective quenching. The selective quencher PC is applicable to situations where a surfactant is not desirable or soluble.  相似文献   

3.
The quenching of anthracene fluorescence by indole, 1,2-dimethylindole (DMI), tryptophan (Trp) and indole 3-acetic acid (IAA) in palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers was investigated. A very efficient quenching of the anthracene fluorescence in the lipid membrane is observed. Stern-Volmer plots are linear for DMI but present a downward curvature for the other quenchers. This was interpreted as an indication of the presence of an inaccessible fraction of anthracene molecules. By a modified Stern-Volmer analysis the fraction accessible to the quenchers and the quenching constant were determined. The changes in the fluorescence emission spectrum of indole and DMI have been used to calculate the partition constants of these probes into the membranes, and bimolecular quenching rate constants were determined in terms of the local concentration of quencher in the lipid bilayer. The rate constants are lower than those in homogeneous solvents, which may be ascribed to a higher viscosity of the bilayer. No changes in the emission spectra of Trp and IAA are observed in the presence of vesicles, indicating that these probes locate preferentially in the aqueous phase, or in close proximity to the vesicular external interface in a medium resembling pure water. In these cases quenching rate constants were determined in terms of the analytical concentration. In the quenching by DMI a new, red shifted, emission band appears; it is similar to that observed in non-polar solvents and it is ascribable to an exciplex emission. The exciplex band is absent in the quenching by IAA and Trp and only very weakly present when the quencher is indole. From the position of the maximum of the exciplex emission, a relatively high local polarity could be estimated for the region of the bilayer where the quenching reaction takes place.  相似文献   

4.
Abstract— The fluorescence quenching of 2,3-dimethylnaphthalene (DMN) incorporated to β-cyclodextrin (β-CD) cavities by different olefins (fumaronitrile, acrylonitrile, acrylamide and 2-hydroxyethylmethacrylate) has been measured as a function of the β-CD concentration. The quenching efficiency decreases when the β-CD concentration increases, but extrapolation of the data to infinite cavities concentration does not indicate complete protection. These results are interpreted in terms of two quenching processes, one of them taking place between 2,3-dimethylnaphthalene associated to a β-CD cavity and free quencher, and the other between the DMN and the quencher molecule, both associated with a different cavity. The rate constants of both quenching processes and the β-CD quencher association constant are obtained from the dependence of the quenching efficiency with β-CD concentration.  相似文献   

5.
The fluorescence characteristics of 2-methyl naphthalene have been studied in ionic micelles of sodium dodecyl sulphate (SDS) and cetyl trimethyl ammonium bromide (CTAB) and in nonionic micellar medium of p-t-octylphenyl polyethoxyethanol (Triton X-100). The fluorescence quenching of fluorophore by halides and pseudohalide obeys the Stern-Volmer Equation up to a certain concentration of quencher. A quenching sphere of action model has been considered to explain the deviations from Stern-Volmer behaviour. The distribution of quenchers in the micellar phase has been calculated.  相似文献   

6.
Abstract— N‘-methylnicotinamide chloride has been investigated as a quencher of the intrinsic fluorescence of tryptophyl residues in proteins. Quenching of the tryptophyl fluorescence (excitation at 305 nm) of model compounds and a select group of proteins provide evidence for a mechanism that follows the classical Stern-Volmer relation. The apparent number of exposed tryptophyl residues was obtained in 6M guanidine hydrochloride and aqueous solution at constant pH. Evidence that quenching occurs predominantly by a collisional mechanism was obtained by comparing the equilibrium constant of the non-fluorescent static state with the much larger quenching constant of the excited state.  相似文献   

7.
The room-temperature solution fluorescence quenching of polysilane copolymers by chlorohydrocarbons such as CCl4, CHCl3, C2Cl6, and Cl2CHCHCl2 was studied. The existence of dynamic quenching was preliminarily demonstrated by the experiment of fluorescence lifetime quenching. The fluorescence quenching data were in conformity with the equation: F0/F = (1+KSV[Q])exp(NV[Q]), where F and F0 are the fluorescence intensity with and without the addition of quencher, KSV is the Stern-Volmer constant, [Q] is the quencher concentration, N is the Avogadro constant, and V is the volume of the active sphere. The fluorescence quenching by the first three chlorohydrocarbons was attributed to the contemporaneous effect of dynamic quenching and static quenching. There exists, at least mathematically, a critical quencher concentration [Q]C. When the quencher concentration [Q] < [Q]C, the fluorescence quenching is dominated by the dynamic quenching part; when [Q] > [Q]C, it is dominated by the static quenching part. However, the fluorescence quenching by Cl2CHCHCl2 was attributed to only static quenching. Furthermore, it was proposed that the dynamic quenching may be related with the electrical positivity of the central carbon nucleus of the quenching molecules while the static quenching may be caused by the “outside heavy atom effect” of the Cl element. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The quenching of anthracene fluorescence by indole (IN), 1,2-dimethylindole (DMI), tryptophan (Trp) and indole 3-acetic acid (IAA) in dimiristoylphophatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers was investigated. The studies were carried out at 25 degrees C in POPC vesicles and below (15 degrees C) and above (35 degrees C) the phase transition temperature (24 degrees C) of DMPC. A very efficient quenching of the anthracene fluorescence by IN and DMI in the lipid membrane is observed in all cases. It is less efficient in the case of Trp and IAA. Stern-Volmer plots are linear for DMI but present a downward curvature for the other quenchers. This was interpreted as an indication of the presence of an inaccessible fraction of anthracene molecules. By a modified Stern-Volmer analysis the fraction accessible to the quenchers and the quenching constant were determined. Partition constants of the quenchers were obtained from the changes in the fluorescence emission of the indole moiety caused by the presence of the phospholipid. Using the partition constants bimolecular quenching rate constants were determined in terms of the local concentration of quencher in the lipid bilayer. These corrected rate constants are lower than those in homogeneous solvents. In the case of DMPC values the gel phase are higher than in the liquid-crystalline phase. In the quenching by IN and DMI a new, red shifted, emission band appears which could be assigned to an exciplex emission. The exciplex band is absent in the quenching by IAA and Trp.  相似文献   

9.
The interaction of zinc(II) meso-tetraphenylporphyrin (ZnTPP) with colloidal TiO(2) was studied by absorption, steady state and time-resolved fluorescence spectroscopy. The quenching was found to obey the Stern-Volmer equation and the corresponding Stern-Volmer plots were linear in the range of quencher concentration used 0-5 x 10(-4)M. The bimolecular quenching rate constants (k(q)) were 20.5 x 10(10)M(-1)s(-1) (steady-state) and 2.85 x 10(10)M(-1)s(-1) (time resolved). The quenching process is suggested to involve electron transfer from the ZnTPP to TiO(2) considering the experimental evidences obtained.  相似文献   

10.
Supramolecular inclusion of modified β-cyclodextrin (β-CD) with Triton X-100 (TX) and α-bromonaphthalene (BN) was studied by fluorescence and phosphorescence measurements. Major differences were observed in the magnitude of the apparent stability constants and quenching constants of the inclusion complexes. Methyl substitution on the rims of β-CD increased the binding of TX with β-CD but was unfavorable to the protection of the phenyl group of TX from fluorescence quenching and further accommodation of BN for steric considerations. According to the overall molecular size of β-CD, TX and BN, further inclusion of BN in the cavity of β-CD occupied by TX may force the flexible tert-octyl chain of TX to deform to a greater extent and close packing complexes were obtained. Phosphorescence of BN arising from intermolecular energy transfer between BN and the phenyl group of TX was observed when the phenyl group of TX was irradiated. In the case of heptakis(2,6-di-O-methyl)-β-CD, BN failed to penetrate into the cavity because of the steric hindrance of the methyl substituents at the rim of the β-CD cavity.  相似文献   

11.
The fluorescence spectra of alkyl β-naphthoates with various chain lengths (An) in DMSO-H2O and ethylene glycol-water (EG-H2O) mixtures were studied. The β-naphthoates with short chain show monomer fluorescence only in both solvent mixtures, while fluorescence spectra of long chain alkyl β-naphthoates are dominated by excimer emission. Addition of long chain hydrocarbon or amylose resulted in the reduction of excimer emission and enhancement of monomer fluorescence. All these experimental results supported intermolecular aggregation of long chain alkyl β-naphthoates in poor solvents. The kinetic parameters of the formation and dissociation of excimer as well as fluorescence polarization in aggregates were measured. These data provided an insight into the characteristics of aggregates.  相似文献   

12.
已知在液氮温度下(77 K)核酸碱基之间能生成基态复合物[1],这些复合物的荧光发射有比较大的红移.在室温条件下,核酸碱基的荧光发射量子产率很低,以至几乎无法检测.  相似文献   

13.
This work describes the effect of a variety of metal ions as quenchers of the fluorescence of naphthalene, in aqueous micellar solutions of sodium dodecyl sulfate (SDS). The quenching by the metal ions can be adequately described by the Stern-Volmer equation and the best signal to noise ratios are obtained with low micellized detergent concentrations. Apparent Stern-Volmer constants decrease in the order: Fe3+ > Cu2+ > Pb2+ > Cr3+ > Ni2+ and directly reflect the relative sensitivity of the method for these ions. Detection limits (defined as three times the standard deviation of the blank for n= 10) for the fluorescence quenching of naphthalene by the metal ions in aqueous micellar SDS are in the range of 1.0 x 10(-6) to 1.0 x 10(-5) mol dm(-3). The proposed fluorescence quenching method shows good repeatibility for a variety of added quencher metal ions, indicating that anionic micelle-enhanced fluorescence quenching by metal ions constitutes an analytical method of rather general application.  相似文献   

14.
Fluorescence of the inclusion complexes with different compositions formed by naphthalene-h8, naphthalene-d8, 2,7-dimethylnaphthalene (DMN), and 2-benzylnaphthalene (BN) with β-cyclodextrin (β-CD) in water was studied. Two types of fluorescence are observed, monomer (MF) and excimer (EF_ fluorescence. The excimer fluorescence of the 2∶2 complex emitted by aggregated light-dispersing crystals forming a precipitate, whereas is the MF is concentrations, EF predominates for the resulting complexes. A proposed structure of the inclusion complexes was derived from MNDO/PM3 semiempirical quantum-chemical calculations. The EF is caused by the structure of the complex, in which both naphthalene molecules are separated by a distance of 4.7 Å: they lie in parallel orientation to each other, whereby one ring is displaced from the other by one-fourth of the length of the naphthalene ring. The complexes of 2,7-DMN and 2-benzylnaphthalene with β-CD do not exhibit EF. For the 2∶2 complex of 2,7-DMN with β-CD, this is due to the fact that the aromatic fragments are removed too far from one another 2-Benzylnaphthalene is unable to form an inclusion complex with β-CD, in whose structure the aromatic fragments inside the cavity could be arranged in parallel planes; instead, it forms a 1∶2 complex with β-CD.  相似文献   

15.
The properties of steady-state spontaneous luminescence of a quantum system with a photoproduct with recordable fluorescence under the conditions of dynamic quenching of excited states by extraneous substances were considered. It was shown that the dependence of photoproduct fluorescence intensity and yield on quencher concentration was nontrivial and could not be conveniently used to determine the Stern-Volmer constant. At the same time, the initial form of the luminophore and its photoproduct produced in a kinetically controlled reaction are quenched in such a way that the ratio of their fluorescence intensities increases linearly as the quencher concentration grows. The corresponding equation was used to determine the constant of bimolecular quenching of reaction product excited states. The results were used in an analysis of the experimental fluorescence spectra of flavone (3-hydroxiflavone), whose fluorescence was excited under the conditions of dynamic quenching of the S 1 state. Our analysis was shown to be applicable to a wide range of compounds with photoreactions accompanied by two-band fluorescence (charge transfer, proton transfer, phosphorescence, complex formation, etc.). It could be used to accurately determine bimolecular contact constants for excited states of photoreaction product molecules. Original Russian Text ? V.I. Tomin, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 3, pp. 580–585.  相似文献   

16.
Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter- and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of K s = 52.3 M−1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.  相似文献   

17.
唐波  马骊  初春 《化学学报》2002,60(10):1834-1840
利用稳态荧光法研究了β-环糊精(β-CD)与新型抗炎药物萘丁美酮(NAB) 间的超分子相互作用,探讨了直链醇(ROH)对该超分子体系的影响。研究表明无 论体系中是否含有直链醇,β-CD和萘丁美酮均形成1/1的超分子包合物其表观结合 常数K_(app)随醇碳链长度的增长而逐渐减小。将这一现象归因于醇对β-CD疏水性 空腔的竞争作用,而非β-CD/NAB/ROH三元包合物的形成所致。荧光猝灭实验表明 水相中β-CF增敏萘丁美酮荧光是源于其疏水性空腔对萘丁美酮激发单重态的屏蔽 效应。直链醇的加入抑制了该效应,从而进一步证实了醇对β-CD空腔的竞争作用 确实导致萘丁美酮被置换到水相中。利用β-CD对萘丁美酮的包结作用使其荧光显 著增大这一特性,建立了水相中高灵敏度测定萘丁美酮的荧光光度法,线性范围为 0~3.0μg·mL~(-1),检测下限1.05 ng·mL~(-1)。常用药物赋形剂对测定不产生 干扰。应用本法测定片剂中萘丁美酮含量,结果令人满意。  相似文献   

18.
Fluorescence quenching of 9,10-dimethyl-3, 4,6,7,9,10-hexahydro-1,8(2H,5H) acridinedione (ADD) dye by N,N-dimethylaniline (DMA) in SDS and CTAB were studied by steady state fluorescence and time resolved techniques. The Stern-Volmer plots for the quenching of ADD by DMA is found to be linear and the Stern-Volmer constant K(SV) depends on the micellar concentration. The fluorescence quenching analysis reveals the binding of DMA with the micelles. The perturbation of the probe on the position of DMA molecule in micelle is inferred in the present investigation. The ADD fluorophore drives the DMA molecule into the non-polar region (core) of the micelle whereas other fluorophores like pyrene and rhodamine6G do not affect the position of DMA. In this report, the importance of the nature of fluorophores in determining the position and association of the quencher molecules in the aggregated systems is being discussed.  相似文献   

19.
Fluorescent Cd metal–organic frameworks (MOFs), [Cd2(dicarboxylate)2(NI-bpy-44)2] (dicarboxylate=benzene-1,4-dicarboxylate (1,4-bdc, 1 ), 2-bromobenzene-1,4-dicarboxylate (Br-1,4-bdc, 2 ), 2-nitrobenzene-1,4-dicarboxylate (NO2-1,4-bdc, 3 ), biphenyl-4,4′-dicarboxylate (bpdc, 4 ); NI-bpy-44=N-(pyridin-4-yl)-4-(pyridin-4-yl)-1,8-naphthalimide)), featuring non- and twofold interpenetrating pcu -type bipillared-layer open structures with sufficient free voids of 58.4, 51.4, 51.5, and 41.4 %, respectively, have been hydro(solvo)thermally synthesized. MOFs 1 – 4 emitted solid-state blue or cyan fluorescence emissions at 447±7 nm, which mainly arose from NI-bpy-44 and are dependent on the incorporated solvents. After immersing the crystalline samples in different solvents, that is, H2O and DMSO ( 1 and 2 ) as well as nitrobenzene and phenol ( 1 – 4 ), they exhibited a remarkable fluorescence quenching effect, whereas o-xylene and p-xylene ( 4 ) caused significant fluorescence enhancement. The sensing ability of MOFs 1 – 4 toward nitro compounds carried out in the vapor phase showed that nitrobenzene and 2-nitrophenol displayed detectable fluorescence quenching with 1 , 2 , and 4 whereas 4-nitrotoluene was an effective fluorescence quencher for 1 and 2 ; this is most likely attributed to their electron-deficient properties and higher vapor pressures. Moreover, MOFs 1 – 4 are highly reusable for quick capture of volatile iodine, as supported by clear crystal color change and also by immense fluorescence quenching responses owing to the donor–acceptor interaction. Low-pressure CO2 adsorption isotherms indicate that activated materials 1′ – 4′ are inefficient at taking up CO2.  相似文献   

20.
The effects of α-, β- and γ-cyclodextrins (CDs) on the fluorescence spectra of a series of polymethylene-bis-β-naphthoates (Bn) have been studied. It is observed that β-CD and γ-CD enhance Bn intramolecular excimer fluorescence, indicating the formation of two-to-one guest host inclusion complexes. The possible conformation of these inclusion complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号