首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeh CH  Yang CH 《Ultrasonics》2011,51(4):472-479
Guided waves propagating in cylindrical tubes are frequently applied for the characterization of material or geometrical properties of tubes. In a tube, guided waves can propagate in the axial direction and called axial guided waves, or in the circumferential direction called circumferential guided waves. Dispersion spectra for the axial and circumferential guided waves share some common behaviors and however exhibit some particular behaviors of their own. This study provides an investigation with theoretical modeling, experimental measurements, and a simplex-based inversion procedure to explore the similarity and difference between the axial guided waves and circumferential guided waves, aiming at providing useful information while axial and circumferential guided waves are applied in the area of material characterization. The sensitivity to the radius curvature for the circumferential guided waves dispersion spectra is a major point that makes circumferential guided waves different from axial guided waves. For the purpose of material characterization, both axial and circumferential guided waves are able to extract an elastic moduli and wall-thickness information from the dispersion spectra, however, radius information can only be extracted from the circumferential guided waves spectra.  相似文献   

2.
We investigate surface waves at the interface between a metal and a photovoltaic-photorefractive (PP) crystal. These surface waves appear in several forms: delocalized surface waves, shock surface waves, and localized surface waves. Only localized surface waves have limited energy. We demonstrate that the transverse sizes of localized surface waves decrease with an increase in the propagation constant and the amplitudes of localized surface waves increase with the propagation constant. The stability of localized surface waves is investigated numerically and it is found that they are stable.  相似文献   

3.
The case where the magnetic flux inside an electronic loop varies with time is considered for an experiment in which the Aharonov-Bohm effect is observed. The electromagnetic field and potentials of a solenoid with an alternating current are studied. It is shown that the vector potential outside the solenoid contains a term corresponding to a zero electromagnetic field at the same point of space. This part of the potential (global potential) describes standing waves whose properties differ from those of ordinary electromagnetic waves and which can be conventionally called information potential waves. A method of detecting information waves is proposed involving an effect similar to the Aharonov-Bohm effect (quasi-Aharonov-Bohm effect). Unlike ordinary electromagnetic waves, these information waves are not involved in any energy interactions but they can carry information.  相似文献   

4.
In complex structures, curvature and impedance discontinuities (e.g., junctions) couple bending and longitudinal waves. Propagation losses for longitudinal waves are often much less than losses for bending waves, and damping treatments often less effective on longitudinal waves. When the dissipation in longitudinal waves is less than that on bending waves, longitudinal waves can provide an efficient means of power flow between bending waves generated at one location and bending waves that are a source of acoustic radiation at another location. In order to design and locate effective treatments, knowledge of the power flow in longitudinal as well as bending waves is required. The measurement of power in both bending and longitudinal waves when both waves are present is demonstrated. Measurements conducted on a straight beam and a T-beam are compared to predictions obtained using finite element methods. The effect of coupling between waves at the junction in a T-beam is illustrated using results from measurements of power flow.  相似文献   

5.
This article develops a model for the study of the transient ultrasonic waves radiated by a transducer in a liquid and transmitted into a solid through a plane interface. The method is an extension to the transient case, of the angular spectrum method previously developed for the monochromatic case. It is based on the decomposition of the ultrasonic field, in impulse plane waves. The radiated waveform is calculated at any point in the field by a simple summation of these impulse plane waves, where the propagation delay and the refraction have been taken into account. These plane waves are, first of all, delayed by an amount of time corresponding to the travel time up to the considered field point. The transmission through the plane interface is taken into account by using Snell refraction laws and transmission coefficients. In the obtained results all the waves previously described by other authors are highlighted: direct wave, edge waves, head waves as well as subsurface waves with a clear resolution between compression and shear waves.  相似文献   

6.
Acoustic waves arising in a fluid-filled elastic spherical shell placed in a liquid are considered. It is demonstrated that, in general, none of the four types of waves possible in such a system (subsonic and supersonic antisymmetric Lamb waves, symmetric Lamb waves, and whispering galleries) is realized separately, but an interaction between the waves of different types takes place.  相似文献   

7.
8.
采用系统中的局部不均匀性消除振荡系统中的反螺旋波. 该不均匀性在系统中成为一个波源,不断产生稳定的相波. 研究结果发现,不均匀性的尺寸大小存在一个临界值,如果低于此临界值,则系统将无法激发任何相波. 根据不均匀性形状的不同,系统分别产生靶波和行波. 此外,实验还发现靶波与反螺旋波之间以及行波与反螺旋波之间存在着不同的动态竞争. 数值计算表明,对于行波,无论是低频行波还是高频行波,都可以成功地消除系统中的反螺旋波;而对于靶波,只有低频靶波才可以消除反螺旋波. 此控制方法简单易行,且同样适用于消除向外传播的螺旋波  相似文献   

9.
The tunneling of evanescent waves into propagating waves is related to the convolution of the high spatial frequencies of the source with those of the detectors. Such an approach is demonstrated by treating the evanescent waves which are diffracted from very narrow apertures in a plane screen (with dimensions much smaller than the wavelength) and are converted to propagating waves by tip detectors. The mechanism responsible for the conversion of evanescent waves into propagating waves is explained and a general formula for the conversion of evanescent waves into propagating waves is derived. PACS 42.25.Fx; 42.30.Kq; 42.25.Bs  相似文献   

10.
The energy distribution between different types of seismic waves produced by a source of longitudinal and transverse waves with an arbitrary radiation pattern in an elastic half-space is considered. With an appropriate choice of the angular distribution functions, this source can model an earthquake source. A direct theoretical comparison of the energy distributions of seismic waves generated by an underground explosion and an earthquake is carried out. Analytical relationships that describe the dependence of the energy distribution between different types of waves on the parameters of the medium and the source are derived.  相似文献   

11.
The properties of helical waves arising near a cylindrical cavity in an elastic medium are described. These waves are a manifestation of aperiodic (in angle) solutions to the dynamic elasticity equations. The dispersion characteristics of the waves are determined, and the spatial structure of the waves is described.  相似文献   

12.
Shear horizontal surface acoustic waves do not exist on the flat surface of a semi-infinite elastic medium. It has been shown by several authors recently that such waves can exist on a periodically corrugated, planar surface. We show here on the basis of the Rayleigh method that shear horizontal surface acoustic waves exist on a randomly rough planar surface of an isotropic elastic medium. These waves are only weakly localized to the surface and they have a lifetime that is long due to their roughness-induced scattering into other surface acoustic waves and into bulk waves.  相似文献   

13.
Arnoldus HF  Foley JT 《Optics letters》2003,28(15):1299-1301
Electric dipole radiation consists of traveling and evanescent plane waves. When radiation is detected in the far field, only the traveling waves will contribute to the intensity distribution, as the evanescent waves decay exponentially. We propose a method to spatially separate the traveling and evanescent waves before detection. It is shown that when the radiation passes through an interface, evanescent waves can be converted into traveling waves and can subsequently be observed in the far field. Let the radiation be observed under angle theta(t) with the normal. Then there exists an angle theta(ac) such that for 0 < or = theta(t) < theta(ac) all intensity originates in traveling waves, whereas for theta(ac) < theta(t) < pi/2 only evanescent waves contribute. It is shown that with this technique and under the appropriate conditions almost all far-field power can be provided by evanescent waves.  相似文献   

14.
Keeping in view the increased usage of orthorhombic materials in the development of advanced engineering materials such as fibers and composites and other multilayered media, the aim of the present paper is to give a detailed account of the plane harmonic generalized thermoelastic waves in orthorhombic materials. According to the frequency equation, the four waves, a quasi-longitudinal, two quasi-transverse, and a quasi-thermal wave, can propagate in an orthorhombic crystal. When plane waves propagate along the axis of an orthorhombic solid, then only the longitudinal and thermal waves are coupled, whereas the transverse waves get decoupled from the rest of the motion. For plane waves propagating in one plane of the solid, only the SH wave in that plane remains purely transverse and gets decoupled from the rest of the motion and vice versa. The other three waves are coupled and get modified due to thermal variations and relaxation time. The particle paths and stability of the waves have been discussed and the results verified numerically. These have been represented graphically for single crystals of solid helium and cobalt material.  相似文献   

15.
Murray PR  Dewhurst RJ 《Ultrasonics》2002,40(1-8):771-776
Quantitative time-of-flight analysis of laser-generated shear waves and longitudinal-shear mode-converted waves has demonstrated an effective method for non-contact monitoring of the thickness of metal plates. Q-switched Nd:YAG laser pulses with energies of approximately 18 mJ, delivered to the material surface via an optical fibre and focused to a line source by a cylindrical lens, excited surface waves, longitudinal and shear waves. Bulk waves propagated through the plate to be reflected from the far surface. Returning waves were detected using an electro-magnetic acoustic transducer (EMAT) sensitive to in-plane motion. The compilation of B-scans generated as the sensor head was moved along the material's surface to produce a 2-D intensity profile made any changes in the plate thickness easy to visualise. The longitudinal-shear (L-S) and shear-longitudinal (S-L) mode-converted waves provided a method of simultaneously monitoring two different points on the far surface enabling any changes in the material thickness to be clearly identified. This method was used to determine the thickness of aluminium samples ranging in from 5 to 70 mm.  相似文献   

16.
It is shown that, along with gravity waves, surface and internal waves caused by van der Waals forces may exist in a liquid with a horizontal free surface. A dispersion relation is found by using the stepwise approximation for the coefficients of a wave equation derived for these waves. The surface waves are similar to surface gravity waves in dispersion and amplitude distribution but differ in frequency by several orders of magnitude. Another sequence of roots in the spectrum corresponds to internal van der Waals waves that have an upper frequency bound and the dispersion law typical of a multimode waveguide.  相似文献   

17.
The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.  相似文献   

18.
The possibility of mode-coupling, in a plasma, waves being in resonance with the sample particles is considered. The physical mechanism of this phenomenon is discussed, using as an example two monochromatic finite-amplitude waves: a Langmuir wave and an extraordinary wave. It is shown that the resonant electrons can be an effective channel for energy exchange between the waves.  相似文献   

19.
The possibility of degenerate internal nonlinear resonance interaction between capillary waves with arbitrary symmetry (arbitrary azimuthal numbers) on the surface of a charged cylindrical jet of an ideal incompressible conducting liquid is demonstrated. The jet moves in an ideal incompressible dielectric medium collinearly with an external uniform electrostatic field. It is shown, in particular, that six different resonance situations take place for axisymmetric waves in which primary waves and waves due to the nonlinearity of the equations of hydrodynamics exchange energy.  相似文献   

20.
The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves, two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号