首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

2.
Nanosecond laser photolytic studies of 4-nitro-N,N-dimethylnaphthylamine (4-NDMNA) in nonpolar and polar solvents at room temperature show a transient species with an absorption maximum in the 500-510-nm range. This species is assigned to the lowest triplet excited state of 4-NDMNA. The absorption maximum of this state is independent of solvent polarity, and its lifetime is a function of the hydrogen donor efficiency of the solvent. In n-hexane the lifetime 1/k of the triplet state is 9.1 × 10?6 sec, while in acetonitrile 1/k is 2.0 × 10?7 sec. The hydrogen abstraction rate constant kH of the triplet state with tributyl tin hydride (Bu3SnH) in n-hexane is 1.7 × 107M?1·sec?1, while in the case of isopropyl alcohol as hydrogen donor, kH is 4.0 × 107M?1·sec?1. The activation energy for the hydrogen abstraction by the triplet state from Bu3SnH in deaerated n-hexane is 0.6 kcal/mol. The lack of spectral shift with increasing solvent polarity, and the appreciable hydrogen abstraction reactivity of the triplet state, also independent of solvent polarity, seem to indicate that this excited state is an n-π* state which retains its n-π* character even in polar media.  相似文献   

3.
The electron spin dipole-dipole contribution to the zero field splitting has been evaluated for the 3A2 (n → π*) and 3A1 (π → π*) states of formaldehyde using a CI wave function constructed from contracted Gaussian-lobe functions. The values D = 0.539 cm?1 and E = 0.031 cm?1 were obtained for the 3A2(n → π*) state and D = ?0.588 cm?1 and E = 0.058 cm?1 were obtained for the 3A1 (π → π*) state using the CI wave function constructed from SCF orbitals of the respective parent configurations. An analysis of the effect of CI on the parameters is given for the 3A2 (n n → π*) state of formaldehyde and the 3B1 ground state of methylene. Numerical results are given which show that internally consistent self-consistent field orbitals (ICSCF ) are superior to canonical SCF orbitals as a starting point for a CI calculation. Our CI wave function for the 1A1 ground state gave an energy of ?114.13658 hartrees which is significantly lower than any previously reported energy calculation. This wave function gives a dipole moment of 2.22 Debye (C+O?) in good agreement with the experimental value of 2.33 ± 0.02 Debye.  相似文献   

4.
The synthesis and the solid state magnetic properties of (nitronyl nitroxide)‐substituted trioxytriphenylamine radical cation tetrachlorogallate, NNTOT+·GaCl4? , are reported. In the temperature region between 300 and 3 K, the magnetic behavior is characterized by the strong intramolecular ferromagnetic interaction (J/kB=+400 K) between the radical ( NN ) and the radical cation ( TOT +) and the weak intermolecular antiferromagnetic interaction (J/kB=?1.9 K) between NNTOT+ ions. Below 3 K, a 3D‐type long‐range magnetic ordering into a weak ferromagnet was observed (TN=2.65 K). The magnetic entropy (Smag=8.97 J K?1 mol?1) obtained by the heat capacity measurement is in good agreement with the theoretical value of R ln3=9.13 J K?1 mol?1 based on the S=1 state.  相似文献   

5.
The gas‐phase elimination of phenyl chloroformate gives chlorobenzene, 2‐chlorophenol, CO2, and CO, whereasp‐tolyl chloroformate produces p‐chlorotoluene and 2‐chloro‐4‐methylphenol CO2 and CO. The kinetic determination of phenyl chloroformate (440–480oC, 60–110 Torr) and p‐tolyl chloroformate (430–480°C, 60–137 Torr) carried out in a deactivated static vessel, with the free radical inhibitor toluene always present, is homogeneous, unimolecular and follows a first‐order rate law. The rate coefficient is expressed by the following Arrhenius equations: Phenyl chloroformate: Formation of chlorobenzene, log kI = (14.85 ± 0.38) (260.4 ± 5.4) kJ mol?1 (2.303RT)?1; r = 0.9993 Formation of 2‐chlorophenol, log kII = (12.76 ± 0.40) – (237.4 ± 5.6) kJ mol?1(2.303RT)?1; r = 0.9993 p‐Tolyl chloroformate: Formation of p‐chlorotoluene: log kI = (14.35 ± 0.28) – (252.0 ± 1.5) kJ mol–1 (2.303RT)?1; r = 0.9993 Formation of 2‐chloro‐4‐methylphenol, log kII = (12.81 ± 0.16) – (222.2 ± 0.9) kJ mol?1(2.303RT)–1; r = 0.9995 The estimation of the kI values, which is the decarboxylation process in both substrates, suggests a mechanism involving an intramolecular nucleophilic displacement of the chlorine atom through a semipolar, concerted four‐membered cyclic transition state structure; whereas the kII values, the decarbonylation in both substrates, imply an unusual migration of the chlorine atom to the aromatic ring through a semipolar, concerted five‐membered cyclic transition state type of mechanism. The bond polarization of the C–Cl, in the sense Cδ+ … Clδ?, appears to be the rate‐determining step of these elimination reactions.  相似文献   

6.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

7.
A 1-D chain complex, cadmium(ΙΙ) chloride thiocyanate (1), [CdCl(SCN)] n was synthesized by evaporation and characterized by single-crystal X-ray diffraction and FT-IR techniques. The compound crystallizes in the space group Pnma of orthorhombic system with cell parameter a = 9.5967(7), b = 4.2595(3), and c = 10.1789(7) Å; V = 416.08(5) Å3 and Z = 4. The cadmium(ΙΙ) is five-coordinate, surrounded by one pair of (µ-1,1-NCS) bridging NCS? and three Cl? as a µ3-linker coordinating three Cd(ΙΙ) centers, approximately a severely distorted square-pyramidal configuration. Cd(ΙΙ), Cl?, and SCN? form an infinite 1-D chain with chair-like features, a new example of mixed Cd–NCS–Cl discrete compounds. The photophysical properties of the crystals have been investigated with one emission peak at 473 nm observed for the title complex in the solid state, which exhibits blue luminescence. The mechanical properties of the crystals have been studied using Vickers microhardness tester and the hardness was 78.6 kg mm?2.  相似文献   

8.
The gas-phase eliminations of several tert-butyl esters, in a static system and in vessels seasoned with allyl bromide, have been studied in the temperature range of 171.5–280.1°C and the pressure range of 23–98 torr. The rate coefficients for the homogeneous unimolecular elimination of these esters are given by the following Arrhenius equations: for tert-butyl pivalate, log k1(s?1) = (13.44 ± 0.30) ? (169.1 ± 3.1) kJ · mol?1 (2.303RT)?1; for tert-butyl trichloroacetate, log k1(s?1) = (12.41 ± 0.08) ? (141.1 ± 0.7) kJ · mol?1 (2.303RT)?1; and for tert-butyl cyanoacetate log k1(s?1) = (11.31 ± 0.44) ? (137.8 ± 4.1) kJ · mol?1 (2.303RT)?1. The data of this work together with those reported in the literature yield a good linear relationship when plotting log k/k0 vs. σ* values (ρ* = 0.635, correlation coefficient r = 0.972, and intercept = 0.048 at 250°C). The positive ρ* value suggests that the movement of negative charge to the acyl carbon in the transition state is rate determining. The present results along with previous investigations ratify the generalization that electron-withdrawing substituents at the acyl side of ethyl, isopropyl, and tert-butyl esters enhance the elimination rates, while electron-releasing groups tend to reduce them. The negative nature of the acyl carbon and the polarity in the transition state increases slightly from primary to tertiary esters.  相似文献   

9.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

10.
Absolute rate constants and their temperature dependencies were determined for the addition of hydroxymethyl radicals (CH2OH) to 20 mono- or 1,1-disubstituted alkenes (CH2 = CXY) in methanol by time-resolved electron spin resonance spectroscopy. With the alkene substituents the rate constants at 298 K (k298) vary from 180 M?1s?1 (ethyl vinylether) to 2.1 middot; 106 M?1s?1 (acrolein). The frequency factors obey log A/M?1s?1 = 8.1 ± 0.1, whereas the activation energies (Ea) range from 11.6 kJ/mol (methacrylonitrile) to 35.7 kJ/mol (ethyl vinylether). As shown by good correlations with the alkene electron affinities (EA), log k298/M?1s?1 = 5.57 + 1.53 · EA/eV (R2 = 0.820) and Ea = 15.86 ? 7.38 · EA/eV (R2 = 0.773), hydroxymethyl is a nucleophilic radical, and its addition rates are strongly influenced by polar effects. No apparent correlation was found between Ea or log k298 with the overall reaction enthalpy. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The synthesis, structure and magnetic properties of [Fe(bpe)4(H2O)2](TCNQ)2 ( 1 ) are reported. 1 crystallizes in the triclinic P space group, a = 13.481(5), b = 14.887(3), c = 16.663(4) Å, α = 101.048(18), β = 112.84(2), γ = 90.92(2)°, V = 3009.6(14) Å3, Z = 2. The iron atom defines a compressed octahedron with the equatorial positions occupied by the bpe molecules which act as monodentate ligands and the two axial positions occupied by water molecules. The TCNQ? radical counterions are uncoordinated and interact by pairs defining (TCNQ)22? units strongly coupled antiferromagnetically. The iron(II) atoms are in the high spin state and its magnetic behaviour indicates the occurrence of zero‐field splitting of the S = 2 ground state.  相似文献   

12.
-We have carried out a very detailed study, using fluorescence and optical flash photolysis techniques, of the photoreduction of methyl viologen (MV2+) by the electron donor ethylene diamine tetraacetic acid (EDTA) in aqueous solution sensitized by the dye acridine orange (AOH+). A complete mechanism has been proposed which accounts for virtually all of the known observations on this reaction. This reaction is novel in that both the triplet and the singlet state of AOH+ appear to be active photochemically. We have shown that mechanisms previously proposed for this reaction are probably incorrect due to an artifact. At pH 7 the fluorescence quantum yield φs of AOH+ is 0.26 ± 0.02 and the fluorescence lifetime is 1.8 ± 0.2 ns. φs is pH dependent and reaches a maximum of 0.56 at pH 4. The fluorescence of AOH+ is quenched by MV2+ at concentrations above 1 mM and the quenching obeys Stern-Volmer kinetics with a quenching rate constant of (1.0 ± 0.1) × 1010M?1 s?1. The quenching of the AOH+ excited singlet state by MV2+ almost certainly returns the AOH+ to its ground state with no photochemistry occurring. EDTA also quenches the fluorescence of AOH· with Stern-Volmer kinetics but with a smaller rate constant (6.4 ± 0.5) × 108M?1s?1 at pH 7. In this case the quenching is reactive resulting in the formation of semireduced AOH. In the presence of MV2+, flash irradiation of AOH+ does result in the reversible formation of the semireduced MV? which absorbs at 603 nm. We attribute this to a photochemical reaction of the triplet state of AOH+ with MV2+. The initial quantum yield for formation of MV? (φMV:)0 was found to be constant at 0.10 ± 0.05 for [MV2+] from 5 × 10?5 to 1.0 × 10?3 with [AOH+] = 8 × 10?6M. Previous workers had found that (φMV:)0 appears to decrease with decreasing [AOH+]; however, on careful investigation, we found this was most probably due to quenching of the triplet state of AOH+ by trace amounts of oxygen. When EDTA is added to a mixture of AOH + and MV2+ at pH 7, the photochemical formation of MV? becomes irreversible as the [EDTA] is increased. The quantum yield for the irreversible formation of MV? exceeds 0.10 becoming as large as 0.16 for [EDTA] = 0.014M. This fact requires that an alternative photochemical process must be operative and we present evidence that this is a reaction of EDTA with the excited singlet state of AOH+ to produce the semi-reduced AOH- which then reacts with MV2+ to produce MV?. The full kinetic scheme was tested by computer simulation and found to be totally consistent. This also enabled the processing of a full set of rate constants. When colloidal PtO2 was added to the optimal mixture [EDTA] = 3.4 × 10?2M; [MV2+] = 5 × 10?4M; [AOH+] = 4 × 10?5M; pH6 H2 gas was produced at a rate of 0.2μmol H2h?1. Thus, acridine orange should serve as an effective sensitizer in reactions designed to use solar energy to photolyze water.  相似文献   

13.
The kinetics and mechanism for the reaction of NH2 with HONO2 have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the B3LYP/6‐311+G(3df, 2p) level. The reaction producing the primary products, NH3 + NO3, takes place via a precursor complex, H2N…HONO2 with an 8.4‐kcal/mol binding energy. The rate constants for major product channels in the temperature range 200–3000 K are predicted by variational transition state or variational Rice–Ramsperger–Kassel–Marcus theory. The results show that the reaction has a noticeable pressure dependence at T < 900 K. The total rate constants at 760 Torr Ar‐pressure can be represented by ktotal = 1.71 × 10?3 × T?3.85 exp(?96/T) cm3 molecule?1 s?1 at T = 200–550 K, 5.11 × 10?23 × T+3.22 exp(70/T) cm3 molecule?1 s?1 at T = 550–3000 K. The branching ratios of primary channels at 760 Torr Ar‐pressure are predicted: k1 producing NH3 + NO3 accounts for 1.00–0.99 in the temperature range of 200–3000 K and k2 + k3 producing H2NO + HONO accounts for less than 0.01 when temperature is more than 2600 K. The reverse reaction, NH3 + NO3 → NH2 + HONO2 shows relatively weak pressure dependence at P < 100 Torr and T < 600 K due to its precursor complex, NH3…O3N with a lower binding energy of 1.8 kcal/mol. The predicted rate constants can be represented by k?1 = 6.70 × 10?24 × T+3.58 exp(?850/T) cm3 molecule?1 s?1 at T = 200–3000 K and 760 Torr N2 pressure, where the predicted rate at T = 298 K, 2.8 × 10?16 cm3 molecule?1 s?1 is in good agreement with the experimental data. The NH3 + NO3 formation rate constant was found to be a factor of 4 smaller than that of the reaction OH + HONO2 producing the H2O + NO3 because of the lower barrier for the transition state for the OH + HONO2. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 69–78, 2010  相似文献   

14.

Reaction of [NH4]2[MoS4], CuCl and PyPPh2 in the solid state produces a cube-like cluster. The cluster crystallizes in the orthorhombic space group P212121 with four formula units in a cell of dimensions a = 12.8980(10) , b = 17.6820(10), c = 22.665(2) Å. Anisotropic refinement for all nonhydrogen atoms yielded the values R = 0.0397 and R w = 0.1185 for 8803 observed reflections. The structure is built up from three [Cu(Ph2PPy)]+ units bridged by MoS2? 4 to form a tetranuclear symmetrical cube-like molecule. Investigation of the third-order optical nonlinear value showed that it exhibits a considerable nonlinear absorptive and self-defocusing effect with α2 = 1.3 × 10?11 m w?1 and n 2 = ? 3.2 × 10?18 m2 w?1 in a 1.5 × 10?4 M DMF solution.  相似文献   

15.
Diagrammatic many-body perturbation theory is used to calculate the potential energy function for the X1 σ+ state of the CO molecule near the equilibrium nuclear configuration. Spectroscopic constants are derived from a number of curves which are obtained from calculations taken through third order in the energy. By forming [2/1] Padé approximants to the constants we obtain: re = 1.125 Å (1.128 Å), Be = 1.943 cm?1 (1.9312 cm?1), aBe = 0.0156 cm?1 (0.0175 cm?1), We = 2247 cm?1 (2170 cm?1), WeXe = 12.16 cm?1 (13.29 cm?1), where the experimental values are given in parenthesis.  相似文献   

16.
Two-photon high resolution sequential spectroscopy has been used to excite iodine monochloride from X1Σ+ ground state to the intermediate A3Π1 state and thence to a final electronic state at 4.82 eV. Vibrational and rotational analyses of this state have been carried out for both isotopic species. For I35Cl, Te = 38916.0 cm?1 ωe = 168.99 cm?1, ωexe = 0.357 cm?1 and Be = 0.05685 cm?1. The state probably has Ω = 1 in case (c) coupling approximation. It is also shown how to two-photon technique enables rotational line structure of the A ← X transition to be selectively excited for either isotopic species at a resolution of 500000, from an absorption mixture containing natural iodine monochloride plus its iodine dissociation product at equilibrium vapour pressure.  相似文献   

17.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Poly(hydroxyethylmethacrylate)‐based hydrogel membranes were applied to microfabricated, microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) and studied by cyclic voltammetry (CV) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). The membrane produced an order of magnitude decrease in current densities and a shift to quasi reversibility due to a decrease in the Dappt of FcCO2H, from 4.51×10?6 cm2 s?1 to 1.42×10?8 cm2 s?1, (2.18×10?8 cm2 s?1 from release experiments). The MDEA050 (comprising 50 μm disks) maintained its enhanced current density attributes confirming its value as an effective electrode for biosensors. Finite element modeling (FEM) simulations successfully replicated the voltammograms of the MDEAs.  相似文献   

19.
A high‐resolution IR diode laser in conjunction with a Herriot multiple reflection flow‐cell has been used to directly determine the rate coefficients for simple alkanes with Cl atoms at room temperature (298 K). The following results were obtained: k(Cl + n‐butane) = (1.91 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐pentane) = (2.46 ± 0.12) × 10?10 cm3 molecule?1 s?1, k(Cl + iso‐pentane) = (1.94 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + neopentane) = (1.01 ± 0.05) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐hexane) = (3.44 ± 0.17) × 10?10 cm3 molecule?1 s?1 where the error limits are ±1σ. These values have been used in conjunction with our own previous measurements on Cl + ethane and literature values on Cl + propane and Cl + iso‐butane to generate a structure activity relationship (SAR) for Cl atom abstraction reactions based on direct measurements. The resulting best fit parameters are kp = (2.61 ± 0.12) × 10?11 cm3 molecule?1 s?1, ks = (8.40 ± 0.60) × 10?11 cm3 molecule?1 s?1, kt = (5.90 ± 0.30) × 10?11 cm3 molecule?1 s?1, with f( ? CH2? ) = f (? CH2? ) = f (?C?) = f = 0.85 ± 0.06. Tests were carried out to investigate the potential interference from production of excited state HCl(v = 1) in the Cl + alkane reactions. There is some evidence for HCl(v = 1) production in the reaction of Cl with shape n‐hexane. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 86–94, 2002  相似文献   

20.
The electronic structure of the simplest Criegee intermediate, H2COO, is practically that of a closed shell. On the biradical scale (β), where 0 corresponds to the pure closed shell and 1 to a pure biradical, its β value is only 0.10, suggesting that its ground electronic state is best described as a H2C=Oδ+?Oδ? zwitterion. However, this picture of a nearly inert closed shell contradicts its rich reactivity in the atmosphere. It is shown that the mixing of its ground state with the first triplet excited state, which is a pure biradical state of the type H2C.?O?O., is responsible for the formation of strongly bound products during reactions inducing atmospheric particle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号