首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The title compound has been prepared in good yield by the reaction of gallium trichloride with base‐free hypersilyl lithium (Li–Si(SiMe3)3, Me = CH3) in a 1 : 3 molar ratio. Ga(Si(SiMe3)3)3 is monomeric in solution and in the solid state. The compound has been characterized with NMR, IR and Raman techniques as well as by an X‐ray structure determination (planar GaSi3‐skeleton, monoclinic space group P21/c, Z = 4, d(Ga–Si) = 249,8 ± 0,2 pm).  相似文献   

5.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to study the dissociation kinetics and thermochemistry of Me(4)Si, Me(6)Si(2), and Me(3)SiX, (X = Br, I) molecules. Accurate 0 K dissociative photoionization onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distribution, both of them analyzed and simulated in terms of the statistical RRKM theory and DFT calculations. The average enthalpy of formation of trimethylsilyl ion, Delta fH(o)298K(Me(3)Si(+)) = 617.3 +/- 2.3 kJ/mol, has been determined from the measured onsets for methyl loss (10.243 +/- 0.010 eV) from Me(4)Si, and Br and I loss from Me(3)SiBr (10.624 +/- 0.010 eV) and Me(3)SiI (9.773 +/- 0.015 eV), respectively. The methyl loss onsets for the trimethyl halo silanes lead to Delta fH(o)298K(Me(2)SiBr(+)) = 590.3 +/- 4.4 kJ/mol and Delta fH(o)298K(Me(5)Si(2)(+)) = 487.6 +/- 6.2 kJ/mol. The dissociative photoionization of Me(3)SiSiMe(3) proceeds by a very slow Si-Si bond breaking step, whose rate constants were measured as a function of the ion internal energy. Extrapolation of this rate constant to the dissociation limit leads to the 0 K dissociation onset (9.670 +/- 0.030 eV). This onset, along with the previously determined trimethylsilyl ion energy, leads to an enthalpy of formation of the trimethylsilyl radical, Delta fH(o)298K(Me(3)Si(*)) = 14.0 +/- 6.6 kJ/mol. In combination with other experimental values, we propose a more accurate average value for Delta fH(o)298K(Me(3)Si(*)) of 14.8 +/- 2.0 kJ/mol. Finally, the bond dissociation enthalpies (DeltaH(298K)) Si-H, Si-C, Si-X (X=Cl, Br, I) and Si-Si are derived and discussed in this study.  相似文献   

6.
The magnetic susceptibilities of germanides and silicides of the above composition have been measured in the ferromagnetic and paramagnetic region within the range between 80 K and 1270 K.

Mit 1 Abbildung  相似文献   

7.
8.
The red-orange tetrasilacyclobutene 1 (R*=SitBu3) is formed quantitatively by the reaction of tetrasilatetrahedrane 2 and iodine. Surprisingly, water and methanol do not react with 1 with addition to the Si−Si double bond, but instead with replacement of the silicon-bound iodine atoms with oxygen or the methoxy group, respectively. The substitutions possibly proceed by dissociative activation via intermediate 3 .  相似文献   

9.
Investigations Concerning the Reactivity of the Higher Silylphosphanes (me3Si)4P2, [(me3Si)2P]2PH, [(me3Si)2P]2P—Sime3, and (me3Si)3P7 The reaction of (me3Si)2P? P(Sime3)2 1 in ether solutions (THF, monoglyme) with t-buLi (me ? CH3; t-bu ? (CH3)3C) yields (me3Si)3P, (me3Si)2PLi and Li3P7 via (me3Si)2P? P(Li) (Sime3) 4 . Already at ?40° (me3Si)3P2Li 4 decomposes yielding (me3Si)2PLi, Li3P7 and (me3Si)3P. The metallation of (me3Si)3P2H with t-buLi leads to the same results. t-buLi with [(me3Si)2P]2PH 2 in pentane forms [(me3Si)2P]2PLi, which reacts on with meCl or me3SiCl to [(me3Si)2P]2Pme or [(me3Si)2P]2PSime3, resp. On addition of monoglyme to a suspension of [(me3Si)2P]2PLi in pentane, or by treating [(me3Si)2P]2PH in ethers with t-buLi (me3Si)2PLi, Li3P7, (me3Si)3P, are formed. The same compounds are generated by reacting [(me3Si)2P]2P—Sime3 in ethers with t-buLi. The metallation of (me3Si)3P7 in ethers with t-buLi yields (me3Si)2PLi, (me3Si)3P, (t-bu)3P4?(Sime3), Li3P7 and a red solid. The formation of (me3Si)2P7Li is the first step of this reaction.  相似文献   

10.
11.
12.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

13.
The reaction of tetrakis(chloromethyl)silane, Si(CH2Cl)4, with sodium azide afforded tetrakis(azidomethyl)silane (sila-pentaerythrityl tetraazide, Si(CH2N3)4 (1b)). Nitration of tetrakis(hydroxymethyl)silane, Si(CH2OH)4, with nitric acid resulted in the formation of tetrakis(nitratomethyl)silane (sila-pentaerythritol tetranitrate, Si(CH2ONO2)4 (2b)). Compounds 1b and 2b are extremely shock-sensitive materials and very difficult to handle. Spectroscopic data were obtained as good as sensitivity and safety allowed for umambiguous identification. Quantum chemical calculations (DFT) of the C/Si pairs C(CH2OH)4/Si(CH2OH)4, 1a/1b, and 2a/2b regarding the structures and electronic populations were performed.  相似文献   

14.
Silicon K X-ray emission spectra of Si, SiC, Si3N4, and SiO2 are measured using a wavelength dispersive electron probe X-ray microanalyzer. It is shown that the fine structures in the line shape of the low energy tail of the Kα characteristic X-ray emission spectra resemble those of the K X-ray absorption near edge structure (XANES). XANES spectra of 1 μm2 area can be obtained by this method.  相似文献   

15.
16.
Surprisingly facile at low temperatures is the synthesis of the first cyclobismuthanes 1 and 2 [Eq. (1)]. In solution 1 and 2 are in equilibrium. The four-membered ring 2 forms black crystals, which were structurally analyzed. At room temperature the rings decompose to elemental bismuth and R3Bi. R=(Me3Si)2CH.  相似文献   

17.
18.
Synthesis, Properties, and X-Ray Structure Determination of [Li(OC4H8)4][((CH3)3Si)3C–InBr3] The reaction of InBr3 with LiR* · (THF)n (R* = –C(SiMe3)3, THF = OC4H8) in a 1 : 1 molar ratio forms [Li(THF)4][R*InBr3] in good yield. The properties and some spectroscopic data (1H, 13C, 29Si, 7Li–NMR, IR and Raman) of this trisyl-tribromoindate are given and the crystal structure has been determined.  相似文献   

19.
Fromthe experiemntal fundamental vibrational frequencies of (CH3)4 M, (CD3)4 M and (CH3)3 MCD3,M=Si, Ge, Sn, Pb, and of (CH3)2Si(CD3)2 and CH3Si(CD3)3 a transferable local symmetry type force field for (CH3)4–n M groups has been calculated. Applications involving differentM atoms and numbersn of CH3 groups are presented.
  相似文献   

20.
Two Np(5+) silicates, Li(6)(NpO(2))(4)(H(2)Si(2)O(7))(HSiO(4))(2)(H(2)O)(4) (LiNpSi1) and K(3)(NpO(2))(3)(SiO(3)OH)(2) (KNpSi1), were synthesized by hydrothermal methods. The crystal structures were determined using direct methods and refined on the basis of F(2) for all unique data collected with Mo Kalpha radation and an APEX II CCD detector. LiNpSi1 crystallizes in orthorhombic space group Pnma with a =13.189(6) A, b = 7.917(3) A, c = 10.708(5) A, V = 1118.1(8) A3, and Z = 2. KNpSi1 is hexagonal, P62m, a = 9.734(1) A, c = 3.8817(7) A, V = 318.50(8) A3, and Z = 1. LiNpSi1 contains chains of edge-sharing neptunyl pentagonal bipyramids linked into two-dimensional sheets through direct linkages between the neptunyl polyhedra and the vertex sharing of the silicate tetrahedra. The structure contains both sorosilicate and nesosilicate units, resulting in a new complex neptunyl silicate sheet. KNpSi1 contains edge-sharing neptunyl square bipyramids linked into a framework structure through the sharing of vertices with the silicate tetrahedra. The neptunyl silicate framework contains channels approximately 6.0 A in diameter. These structures exhibit significant departures from other reported Np(5+) and U(6+) compounds and represent the first reported Np(5+) silicate structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号