首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The colony-forming ability of Chinese hamster cells (V-79) and HeLa cells has been measured after near-ultraviolet (UV) irradiation, predominantly at 365 nm. To avoid the production of toxic photoproducts, cells were irradiated in an inorganic buffer rather than in tissue culture medium. Under these circumstances near-UV lethality was strongly oxygen-dependent. Both cell lines were approximately 104 times more sensitive to 254 nm irradiation than to 365 nm radiation when irradiated aerobically. Pretreatment with 6 times 105 Jm-2 365 nm radiation sensitised the HeLa, but not the V-79 cell line to subsequent X-irradiation. Pretreatment of cells with 17 Jm-2 254 nm radiation, a dose calculated to produce twenty times more pyrimidine dimers than the 365 nm dose, produced only slight sensitisa-tion to X-rays. It is suggested that the sensitisation to X-rays seen in the HeLa cells after 365 nm treatment is not the result of lesions induced in DNA by the near-UV radiation, but may reflect the disruption of DNA-repair systems.  相似文献   

2.
Abstract —The oxygen dependence of 365 nm inactivation of colony-forming ability of Escherichia coli has been investigated in two series of DNA repair-deficient K12 mutants grown to mid-exponential phase. All strains except a uvr A rec A double mutant are more sensitive to inactivation under O2 and show a lower threshold dose. The inactivation of photoreactivating enzyme in a crude cell extract and DNA repair disruption are both reduced when irradiation is carried out under nitrogen. The rec A gene-dependent synergism between 365 nm and ionising radiation is reversible if cells are incubated in full growth medium before ionising radiation treatment. In a wildtype strain, incubation for 2.5 h in full growth medium after 106 J m-2 365 nm radiation changes a sensitised response to a protection from ionising radiation. Protection is not seen at 1.5 times 106 J m-2. A tentative model for near UV lethality in logarithmic phase cells is suggested which proposes two classes of lesions. One requires oxygen for it's induction, is rapidly fixed as a lethal event as a result of repair disruption, and is primarily responsible for cell death after aerobic 365 nm irradiation. The other lesion, possibly pyrimidine dimers, may lead to cell death under anaerobic conditions.  相似文献   

3.
Abstract— Sensitivity to monochromatic 254- and 365-nm radiation was compared in closely related yeast strains with defects in one or more of the excision-repair ( rad1 ), error-prone repair ( rad18 ), or recombinational-repair ( rad51 ) pathways. At 254 nm, mutants defective in a single repair pathway exhibited slight to moderate UV sensitivity; those defective in two separate pathways were somewhat more UV sensitive, while triple mutants defective in all three pathways exhibited extreme UV sensitivity with a lethal event corresponding to 0.05 J m−2. Repair defects also rendered mutants sensitive to 365-nm radiation; strains with single defects exhibited slight sensitivity, mutants with two defective pathways were more sensitive, and triple mutants exhibited maximal sensitivity with a lethal event corresponding to 2.4 times 104 J m−2. In the triple mutant ( rad1, rad18, rad51 ) at both 254 and 365 nm, the dose per lethal event was almost identical with comparable values in a repair-deficient double mutant ( uvrA, recA ) of Escherichia coli. In the E. coli mutant pyrimidine dimers are believed to be the primary cause of lethality at both wavelengths. Evidence for dimer involvement in the yeast mutant was obtained by demonstrating that lethality at both 254 and 365 nm was photoreactivated by light at 405 nm.  相似文献   

4.
LEAKAGE OF 86Rb+ AFTER ULTRAVIOLET IRRADIATION OF Escherichia coli K-12   总被引:2,自引:0,他引:2  
Abstract— Stationary phase cultures of a DNA repair proficient Escherichia coli K-12 strain showed a release of intracellular material as assessed by three different methods (260 nm absorption; [methyl-3H]thymidine leakage and 86Rb+ leakage) after broad-band (Black-Light Blue) near-UV radiation but not after far-UV (254 nm) radiation. As a control response for membrane damage to cells, this leakage of intracellular material was also determined by each method after mild-heat (52°C) treatment of E. coli K-12. An action spectrum for the release of 86Rb+ from E. coli K-12 after irradiation with monochromatic wavelengths, from 254 to 405 nm, is also presented. The action spectrum for lethality (F37 values) obtained for this strain, shows that leakage of 86Rb+ occurs at fluences equivalent to or slightly less than fluences causing inactivation at wavelengths above 305 nm. In contrast, at wavelengths below 305 nm, leakage of 86Rb+ from irradiated cells can be induced but only at fluences significantly greater than was required to cause cell inactivation. These results indicate, therefore, that near-UV radiation can induce a damaging effect on the cell's permeability barrier which may be significant in causing the death of the cell, whereas the effect is not significant in causing the death of cells by far-UV radiation where DNA damage is known to be the main cause of lethality.  相似文献   

5.
Abstract Reciprocity (total applied fluence produces the same response, regardless of the fiuence rate) for the lethal effects caused by 365 and 254 nm ultraviolet light (UV) was studied for repair-proficient and -deficient Escherichia coli strains. In the repair-proficient strain, E. coli WP2 uvrA * recA *, reciprocity after 365 nm UV was only observed at fluence rates of about 750 Wm-2 and above. Below this rate, the cells became increasingly sensitive as the fluence rate was decreased. Similar lack of reciprocity was obtained whether the cells were exposed at 0 or 25°C. The double repair-defective mutant, E. coli WP100 uvrA recA , showed complete reciprocity after 365 nm UV over the same range of fluence rates measured for the repair-proficient strain. For 254 nm UV, complete reciprocity occurred in both strains over a range of fluence rates differing by an order of magnitude.  相似文献   

6.
Abstract— Photoprotection i. e. the increased resistance of the cells preilluminated with near ultraviolet light (300–380 nm) to the lethal action of 254 nm radiations is observed in wild-type Escherichia coli B cells (which exhibits the Fil phenotype) but requires either an integrated prophage or a rec A mutation to be detected in E. coli K12 strains. Here we have demonstrated that significant photoprotection occurs in an E. coli K12 rec A+ cell containing the Ion allele which is responsible for filamentous growth (Fil phenotype) after 254 nm irradiation. The Fil phenotype can be suppressed by the sfi A of sfi B suppressor genes. Since the E. coli K12 rec A+ Ion sfi B strain exhibits no more photoprotection, these data support the conclusion that in Ion strains photoprotection is due to the abolition of the 254 nm induced filamentation by the near ultraviolet treatment. In addition, we show here that near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis, as well as of the inducibility of β-galactosidase and tryptophanase. These effects are observed only in nuv + cells that contains 4-thiouridine the chromophore responsible for photoprotection. We propose that in Ion (lysogenic) strains, photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle). Concomitantly the SOS triggering signals are eliminated via DNA repair.  相似文献   

7.
Abstract: Intact bacteriophage have been irradiated at 365 nm or at 254 nm and then analysed for DNA photoproducts or injected into their bacterial host to test susceptibility of the damage to both phage and host-cell mediated repair systems. Both thymine dimers and single-strand breaks are induced in the phage DNA by 365 nm radiation. The dimers appear to be the major lethal lesion (approximately 2 dimers per lethal event) in both repair deficient bacteriophage T4 and bacteriophage λ. after irradiation with either 254 nm or 365 nm radiation. Damage induced in T4 by either wavelength is equally susceptible to x -gene reactivation (repair sector approximately 0.5). v -gene reactivation acts on a larger fraction of the near-UV damage (repair sector of 0.82 at 365 nm as against 0.66 at 254 nm). The host-cell mediated photoreactivation system is only slightly less effective for near-UV damage but host-cell reactivation (as measured by comparing survival of phage λ. on a uvr+ and a uvr- host) is effective against a far smaller sector of near-UV damage (0.35) than far-UV damage (0.85). Weigle-reactivation (far-UV induced) of near-UV damage to phage λ is not observed. The results suggest that unless the near-UV damaged phage DNA is repaired immediately after injection. the lesions rapidly lose their susceptibility to repair with a consequent loss of activity of the phage particles.  相似文献   

8.
Abstract— Fluence-response survival curves have been measured for the cellular slime mold Dictyostelium discoideum exposed to near ultraviolet radiation. Data were obtained for a wild type strain and three UV-sensitive mutant strains in exponential growth phase. Fluences for 10% survival (F10) are about 1 MJ m−2 for cells irradiated in saline solution saturated with nitrogen. When air is bubbled through the saline, the Fm values are only one third as large. Strain HPS50, which is the strain most sensitive to gamma radiation and to 254 nm UV, also exhibits the greatest sensitivity to near UV. However, the difference in sensitivity to near UV between wild type and mutant strains is small compared to other physical and chemical agents known to damage DNA.  相似文献   

9.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

10.
Abstract—Excision repair seems to reach a plateau in normal human cells at a 254 nm dose near 20J/m2. We measured excision repair in normal human fibroblasts up to 80J/m2. The four techniques used (unscheduled DNA synthesis, photolysis of BrdUrd incorporated during repair, loss of sites sensitive to a UV endonuclease from Micrococcus luteus , and loss of pyrimidine dimers from DNA) showed little difference between the two doses. Moreover, the loss of endonuclease sites in 24 h following two 20J/m2 doses separated by 24 h was similar to the loss observed following one dose. Hence, we concluded that the observed plateau in excision repair is real and does not represent some inhibitory process at high doses but a true saturation of one of the, rate limiting steps in repair.  相似文献   

11.
Abstract— A type of polycarbonate plastic was found to be sensitive to ultraviolet (UV) radiation. The damage to the material due to UV exposure was revealed by etching in a strong alkaline solution. The latent effect can be retained in the material for a period of at least 30 days. The material was tested for use as a detector of ultraviolet-B (UV-B 280–320 nm) radiation.
The response of the detector in the wavelength region between 254 and 365 nm was determined using a set of narrow-band filters and a 200 W UV xenon-mercury lamp. The maximum UV effect in the detector was observed at a wavelength of 290 nm. The spectral response curve was found to be similar to the human erythema action spectrum.
The detector may be miniaturized for dosimetric applications. The dose response curve is linear in the region up to an erythemal dose of 300 mJcm−2. Laboratory and field tests showed that the dosimeter response to UV exposure was additive and was independent of dose rate. Further experiments suggested that the dosimeter was stable against changes in temperature and humidity.  相似文献   

12.
Abstract— Problems of absolute measurement of the dose rate of ultraviolet radiation of germicidal lamps in energetic units were studied. Irradiance at 254 nm generated by three different Pen Ray SC-1 low-pressure mercury lamps was measured independently in different laboratories using different instruments: (a) Westinghouse SM-600 Meter, (b) General Electric Germicidal Meter, and (c) large-surface thermopile with a Bäckström filter. These lamps were then used as secondary standards of absolute irradiance at wavelength 254 nm and compared with the Latarjet dosimeter and the International Light IL-254 Germicidal Photometer. Mutual agreement of calibration coefficients of three calibrated Pen Ray SC-1 lamps was roughly within ±5 per cent error. This calibration uncertainty indicates limits of the usefulness of Pen Ray lamps as standards. A direct radiometric calibration using an FT-16 Schwarz-Hilger vacuum thermopile, with interference filter NB-254 or UVR-250, was in agreement with the above comparison. On the basis of above radiometric calibration absolute D37 lethal doses were determined equaling 2·7. J/m2 for the bacteriophage T2 and 11·0 J/m2 for the bacteriophage φX-174, the values being read from exponential survival curves.  相似文献   

13.
DESTRUCTION OF PHOTOREACTIVATING ENZYME BY 365 nm RADIATION*   总被引:3,自引:0,他引:3  
Abstract— Following the observation that in vivo photoreactivation of 365-nm-induced pyrimidine dimers could not be observed chemically, a study was made of the inactivation of photoreactivating enzyme activity by this near-ultraviolet wavelength. It was observed that: (1) Dimers induced in extracted bacterial DNA by 365 nm radiation are completely photoreactivable and are monomerized as an exponential function of the photoreactivation time. (2) Photoreactivability of 254-nm-induced damage in Escherichia coli B/r Hcr is progressively destroyed in vivo as a function of the dose of 365 nm radiation. (3) The ability of the yeast photoreactivating enzyme to monomerize dimers induced at 365 nm in bacterial DNA is destroyed in vitro as a function of the dose of 365 nm radiation, and at a rate comparable to killing of E. coli. These results are consistent with biological measurements which indicate that photoreactivability of ultraviolet (near and far) lethal damage is reduced by exposure of the bacteria to 365 nm radiation.  相似文献   

14.
Cell division and DNA synthesis were studied during axenic growth following 254 nm ultraviolet light (UV) irradiation of a repair-proficient parental strain ( rad+ , D10 colony formation = 195 J/m2) and two repair mutants ( rad C. D10= 50 J/m2; rad B. D10= 5 J/m2) of Dictyostelium discoideum. Isopycnic CsCI gradients were used to distinguish uptake of labeled precursors into nuclear (n) and mitochondrial (m) DNA, using Netropsin to enhance the density resolution. In all strains, m-DNA synthesis was inhibited to a lesser extent than was n-DNA synthesis. For rad C, which has been shown in other experiments to be slow in incision and dimer removal, the UV-induced lags in division and n-DNA synthesis were longer than for rad+. However, rad B showed a more complex response. Although brief division lags were observed for < 10 J/m2, little immediate division lag was detected at greater fluences. Instead, a brief period of cell multiplication of up to but not exceeding two-fold occurred, followed by a cessation of division, and then by lysis. Fluences that yielded extensive lags in n-DNA synthesis in rad- and rad C resulted in little detectable immediate postirradiation lag in n-DNA synthesis in rad B. However, later in the postirradiation period, when DNA synthesis had resumed in rad+ and rad C. it gradually declined to near zero in rad B. We conclude: (1) that the more extended lag in division and n-DNA synthesis in rad C is consistent with its slower rate of excision repair, and (2) that rad B contains a defect resulting in less initial blockage of DNA replication by UV lesions.  相似文献   

15.
Abstract— Previous studies (Biolo et al., Photochem. Photobiol. 59, 362-365, 1994) showed that liposome-delivered Si(IV)-na-phthalocyanine (SiNc) photosensitizes B16 pigmented melanoma subcutaneously transplanted in C57 mice to the action of 776 nm light. However, the efficacy of the phototreatment was limited by a lack of selectivity of tumor targeting by SiNc as well as by incomplete necrosis of the neoplastic mass. The present investigations show that the use of a different delivery system (Cremophor emulsion vs liposomes of dipalmitoylphosphatidylcholine) causes no significant increase in the selectivity of tumor targeting for three injected doses of SiNc (0.5, 1, 2 mg/kg). However, upon 776 nm light irradiation (300 mW/cm2; 520 J/cm2), the delay in the rate of tumor growth was maximal (7-8 days) for the highest naphthalocyanine dose. On the other hand, a remarkable improvement in the tumor response was obtained by inducing an intratumoral temperature increase to 44°C immediately after PDT. The thermal effect appeared to be due to photoexcitation of melanin by 776 nm light (550 mW/cm2; 520 J/cm2) and subsequent partial conversion of absorbed energy into heat.  相似文献   

16.
Abstract— Seven axenic wild-type and repair-deficient mutant strains of the cellular slime mold Dictyostelium discoideum have been treated with the furocoumarin 8-methoxypsoralen (8-MOP) up to 50 μg/mζ and then exposed to near ultraviolet light (UVA 320-400 nm) up to 21 kJ/m2. Fluence-response survival curves exhibit shoulders at lower fluences and an exponential lethal response at higher fluences. Neither the psoralen alone nor the irradiation alone produced any measurable lethal effect. Wild-type strains, which show resistance to 254 nm UV and gamma radiation, also show resistance to psoralen plus UVA. The moderate sensitivity of a rad D repair-deficient mutant strain and the extreme sensitivity of a rad B mutant strain to 8-MOP plus UVA parallel their responses to UV and gamma radiation. However a rad C mutant which is sensitive to UV, exhibits wild-type response to photoactivated psoralen.  相似文献   

17.
Abstract— The lethal interaction between monochromatic radiation at various wavelengths and methyl methane sulphonate was tested in strains of Escherichia coli proficient and deficient in DNA repair. In the repair proficient wild-type strain K12 AB1157, the efficiency of sensitization to MMS as a function of dose (at 334 nm, 365 nm and 405 nm) was found to be directly correlated with the dose necessary to remove the shoulder from the survival curve at the wavelength employed. The 365 nm: MMS interaction was also observed in other repair proficient E. coli strains (W3110 and B/r) but was absent in a recA and a polA strain. Pre-treatment of AB1157 with MMS leads to a much larger interaction than pre-irradiation with 365 nm. It is concluded that dose-dependent damage to DNA repair by the near-UV radiation is involved in the interaction and possibly that MMS causes irreversible damage 10 repair enzymes.  相似文献   

18.
Alteration of uracil-DNA glycosylase activity by uracil dimers in DNA   总被引:3,自引:0,他引:3  
Abstract The formation of colonies in solid medium was used as a criterion of viability to determine the effect of ultraviolet radiation on Trichomonas vaginalis. Both viability (colony) counts and total cell (hemocytometer) counts were used to estimate physiological ages of cell populations to be irradiated. Washed-cell suspensions in 0.6% saline were exposed to far- (254 nm) and near-UV (300–400 nm) radiation and dose-response survival curves were constructed from colony counts. The effect of far-UV was found to be independent of growth phase with the D0 for exponential, early stationary, and late stationary cells 2.6, 2.7, and 2.7 J/m2, respectively. Survival to near-UV increased with the age of cells with the estimated D50 being 216 J/m2 for exponential cells, 1360 J/m2 for early stationary cells, and 4200 J/m2 for late stationary cells. Exponential cells of Trichomonas gallinae irradiated with near-UV had a D50 of 340 J/m2. T. vaginalis is highly sensitive to far-UV relative to protozoa. T. vaginalis and T. gallinae are highly sensitive to near-UV relative to other microorganisms.  相似文献   

19.
Abstract— The dose response for tumor induction in albino rat skin by single exposures of UV radiation has been characterized. The shaved dorsal skin of 202 animals was exposed to either of two sources: one emitting a broad spectrum of wavelengths from 275 to 375 nm, and the other emitting at 254 nm. Skin tumors began to appear within 10 weeks of exposure and continued to appear for 70 weeks. The highest tumor yield was 5.5 tumors per rat and occurred when the rats were exposed to 13.0 times 104 J/m2 of the 275–375 nm UV. The 275–375 nm UV was about eight times as effective as the 254 nm UV for the induction of tumors throughout the exposure range from 0.8 times 104 to 26.0 times 104J/m2. Tissue destruction and hair follicle damage was found at the highest exposure to 275–375 nm UV but at none of the exposures to 254 nm UV. Repeated weekly exposures to 275–375 nm UV proved less effective than an equivalent single exposure for inducing tumors, even though the multiple exposures caused more severe skin damage. The transmission of the UV through excised samples of rat epidermis indicated that the exposure to the basal cell layer was about 3% of the surface exposure at 254 nm and about 15% of the surface exposure between 275 and 320 nm. The dependence of tumor yield on UV exposure was linear for 254 nm UV but was more complex for the 275–375 nm UV. For the latter more tumors were produced per unit exposure at lower exposures than at higher exposures.  相似文献   

20.
Abstract Aqueous solutions of KI were examined for use as chemical actinometers to measure 254 nm (germicidal) radiation. Irradiation results in electron ejection from iodide such that aqueous electrons and iodine atoms are formed. In the presence of N20, an electron scavenger, recombination of these two reactive species is eliminated and stoi-chiometric formation of triiodide occurs. The absorbance increase due to triiodide was followed and the quantum yield determined using either a radiometer or ferrioxalate actinometry to estimate the amount of energy absorbed by the KI solution. The quantum yield ( ø ) at 25°C was determined to be 0.26 using radiometry, and 0.224–0.233 using actinometry, depending on the radiation conditions. The following expression was used to measure the incident Huence rate for 254 radiation at a given temperature T for irradiation over a time interval Δt (s) fluence rate (W/m2) = 4. 96 × 106ΔOD(λ)/ e(λ) [0.23+0.004(T-25)] δ t cm−1
At temperatures other than 25°C, the temperature dependence of the quantum yield (0.004/°C) is taken into account by the term shown in the denominator. Because KI remains relatively blind to longer wavelengths such as those found in normal room light, measurements can be made in the presence of room light without having to work in a darkened room.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号