首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The affinity and enantioselectivity have been determined for designed propranolol derivatives as ligands for Cel7A by capillary electrophoresis (CE) at pH 7.0. These results have been compared to measurements at pH 5.0. In agreement with previous studies, the affinity increased at the higher pH. However, the affinity was not as dependent of the ligand structure at pH 7.0 as at pH 5.0, and the selectivity was generally decreased. Instead, at pH 7.0, the changes in binding were mainly dependent on the presence of additional dihydroxyl groups, indicating an increased importance of the electrostatic interactions. To evaluate the pH dependent variations in binding, changes in both the ligand and in the enzyme had to be taken into account. To ensure that the ligands had the same charge in all measurements, pKa-values of all compounds were determined. The ligand-protein interaction has also been studied by inhibition experiments at both pHs to evaluate the specific binding to the active site when competing with the substrate p-nitrophenyl lactoside (pNPL). With support of docking computations we propose a hypothesis on the effect of the ligand structure and pH dependency of the binding and selectivity of amino alcohols to Cel7A.  相似文献   

2.
Amphipathic lignin derivatives (ALDs), prepared from hardwood acetic acid lignin and softwood soda lignin via coupling with a mono-epoxylated polyethylene glycol, have been reported to improve the enzymatic saccharification efficiency of lignocellulose while maintaining significant residual cellulase activity after saccharification. We previously demonstrated that the effect of ALDs was caused by a direct interaction between ALDs and Cel6A (or CBH II). In this study, a different ALD was prepared from softwood kraft lignin in addition to aforementioned ALDs. The interactions between all the ALDs and the enzymes other than Cel6A, such as Cel7A and Cel7B, in a cellulase cocktail were investigated using surface plasmon resonance. The kraft lignin-based ALD showed the highest residual cellulase activity among all ALDs and an improved cellulolytic enzyme efficiency similar to those of the other ALDs. All ALDs were found to directly associate with major enzymes in the cellulase cocktail, Cel6A and Cel7A (or CBH I), but not with Cel7B (or EG I). In addition, the ALDs showed a much higher affinity to amino groups than to hydroxy and carboxy groups. In contrast, polyethylene glycol (molecular mass 4000 Da), one part of the ALD and a previously reported enzymatic saccharification enhancer, did not adsorb onto any enzymes in the cellulase cocktail or the amino group. Size exclusion chromatography demonstrated that the ALDs formed self-aggregates in both water and chloroform; the formation process in the latter was especially unique. Therefore, we conclude that the high residual cellulase activity is attributed to the direct association of ALD aggregates with the CBH group.  相似文献   

3.
It is commonly observed that the rate of enzymatic hydrolysis of solid cellulose substrates declines markedly with time. In this work the mechanism behind the rate reduction was investigated using two dominant cellulases of Trichoderma reesei: exoglucanase Cel7A (formerly known as CBHI) and endoglucanase Cel7B (formerly EGI). Hydrolysis of steam-pretreated spruce (SPS) was performed with Cel7A and Cel7B alone, and in reconstituted mixtures. Throughout the 48-h hydrolysis, soluble products, hydrolysis rates, and enzyme adsorption to the substrate were measured. The hydrolysis rate for both enzymes decreases rapidly with hydrolysis time. Both enzymes adsorbed rapidly to the substrate during hydrolysis. Cel7A and Cel7B cooperate synergistically, and synergism was approximately constant during the SPS hydrolysis. Thermal instability of the enzymes and product inhibition was not the main cause of reduced hydrolysis rates. Adding fresh substrate to substrate previously hydrolyzed for 24 h with Cel7A slightly increased the hydrolysis of SPS; however, the rate increased even more by adding fresh Cel7A. This suggests that enzymes become inactivated while adsorbed to the substrate and that unproductive binding is the main cause of hydrolysis rate reduction. The strongest increase in hydrolysis rate was achieved by adding Cel7B. An improved model is proposed that extends the standard endo-exo synergy model and explains the rapid decrease in hydrolysis rate. It appears that the processive action of Cel7A becomes hindered by obstacles in the lignocellulose substrate. Obstacles created by disordered cellulose chains can be removed by the endo activity of Cel7B, which explains some of the observed synergism between Cel7A and Cel7B. The improved model is supported by adsorption studies during hydrolysis.  相似文献   

4.
We report on studies of Thermobifida fusca cellulases Cel5A, Cel6B and Cel9A binding to pretreated wood particles using Confocal Laser Scanning Microscopy (CLSM). Hydro-thermal pretreated wood particles were immobilized on borosilicate substrates before fluorescently-labeled cellulase solutions at various concentrations were added. Time-lapse CLSM revealed that cellulases Cel5A, Cel6B and Cel9A quickly bound to certain areas of wood particles, slowly diffused into and adsorbed to less accessible areas, but showed little affinity for other areas of the wood. Cellulase-to-substrate association constants were estimated using a transient enzyme binding kinetics model, and were found to be in agreement with published values. In order to accurately account for the fluorescence signal of labeled enzyme mixed with wood autofluorescence, we also developed a spectral deconvolution method to separate signals from multiple fluorochromes.  相似文献   

5.
Novel propranolol analogues have been designed and synthesised and their enantioselective binding to the cellulose degrading enzyme, Cel7A, has been evaluated. Affinity and enantioselectivity have been determined by capillary electrophoresis experiments. Ligands with significantly improved affinity and selectivity have been obtained and an analysis of the results has led to insights concerning the relation between the changes in ligand structure and selectivity as well as affinity to the protein.  相似文献   

6.
To develop functional enzymes in cellulose hydrolysis at or above 70 degrees C the cellobiohydrolase (CBHI/Cel7A) of Thermoascus aurantiacus was cloned and expressed in Trichoderma reesei Rut-C30 under the strong cbh1 promoter. Cellulase production of the parental strain and the novel strain (RF6026) was examined in submerged fermentation experiments using various carbon sources, which were lactose, Solka Floc 200 cellulose powder, and steam pretreated corn stover. An industrially feasible production medium was used containing only distiller's spent grain, KH(2)PO(4), and (NH(4))(2)SO(4). Enzyme production was followed by measurements of protein concentration, total cellulase enzyme activity (filter paper activity), beta-glucosidase activity, CBHI activity, and endogenase I (EGI) activity. The Thermoascus CBHI/Cel7A activity was taken as an indication of the heterologous gene expression under the cbh1 promoter.  相似文献   

7.
At phase boundaries, physical activities of enzymes such as substrate complexation play critical roles in driving biocatalysis. A prominent example is the cellulase cocktails secreted by fungi and bacteria for deconstructing crystalline cellulose in biomass into soluble sugars. At interfaces, molecular mechanisms of the physical steps in biocatalysis remain elusive due to the difficulties of characterizing protein action with high temporal and spatial resolution. Here, we focus on endoglucanase I (Cel7B) from the fungus Trichoderma reesei that hydrolyzes glycosidic bonds on cellulose randomly. We employ all-atom molecular dynamics (MD) simulations to elucidate the interactions of the catalytic domain (CD) of Cel7B with a cellulose microfibril before and after complexing a glucan chain in the binding cleft. The calculated mechanical coupling networks in Cel7B-glucan and Cel7B-microfibril complexes reveal a previously unresolved allosteric coupling at the solid-liquid interface: attachment of the Cel7B CD to the cellulose surface affects glucan chain clenching in the binding cleft. Alternative loop segments of the Cel7B CD were found to affix to intact or defective surface structures on the microfibril, depending on the complexation state. From a multiple sequence alignment, residues in surface-affixing segments show strong conservation, highlighting the functional importance of the physical activities that they facilitate. Surface-affixing residues also demonstrate significant sequence correlation with active-site residues, revealing the functional connection between complexation and hydrolysis. Analysis of the Cel7B CD exemplifies that the mechanical coupling networks calculated from atomistic MD simulations can be used to capture the conservation and correlation in sequence alignment.  相似文献   

8.
A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans ), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima ). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.  相似文献   

9.
A series of celloendoglucanases: Bacillus agaradhaerens Cel 5a, Humicola insolens Cel 5a, H. insolens Cel 7b, H. insolens Cel 45a, Trichoderma reesei Cel 7b, and T. reesei Cel 45a were used to hydrolyse carboxymethylcellulose (CMC) and the hydrolysis products were investigated with a novel liquid chromatography-mass spectrometry (LC-MS) method. Separation was achieved using a graphitised carbon chromatographic column which allowed the use of electrospay compatible eluents. Analysis of the compounds produced during enzyme hydrolysis of CMC is used to understand enzyme selectivities and substitution pattern of CMC. Conventional high-performance anion-exchange chromatography (HPAEC)-pulsed amperometric detection (PAD), size-exclusion chromatography (SEC)-refractive index (RI) detection, and reducing end analysis are also used to analyse enzyme-hydrolysed CMC. The LC-MS method presented allows for a more detailed investigation of hydrolysis products, which facilitates characterisation of both enzymes and substrates.  相似文献   

10.
The ethanol effect on the Trichoderma reesei cellulases was studied to quantify and clarify this inhibition type. To determine inhibition parameters of crude cellulase and purified exoglucanase Cel7A, integrated Michaelis-Menten equations were used assuming the presence of two inhibitors: cellobiose as the reaction product and ethanol as a possible bioproduct of cellulose fermentation. It was found that hydrolysis of cellulose by crude enzyme follows a model that considers noncompetitive inhibition by ethanol, whereas Cel7A is very slightly competitively inhibited. Crude cellulase is much more inhibited (K iul=K icl=151.9 mM) than exoglucanase Cel7A (K icl=1.6 × 1015 mM). Also, calculated inhibition constants showed that cellobiose inhibition is more potent than ethanol inhibition both for the crude enzyme as well as exoglucanase Cel7A.  相似文献   

11.
The lactam 16 , the hydroximolactams 8 , 20 , 23 , and 27 , and the imidazole 32 were prepared following known methods. They were tested together with the known tetrazole 35 and the hydroximolactams 2 and 36 as inhibitors of the cellobiohydrolases Cel7A and Cel6A from Trichoderma reesei. Cel7A is only weakly inhibited by these compounds. Comparing their inhibitory activity evidences the importance of occupying subsites +1 and +2. The results strongly suggest that the shape of none of the variants of the lactone-type inhibitor motif embodied by these inhibitors is complementary to the subsite −1, i. e., analogous to the transition state. Cel6A is rather strongly inhibited by the cellobiose analogues 20 , 23 , and 32 , and by the cellotriose analogue 27 . Their relative inhibitory activities evidence that binding at subsite −2 depends upon the shape of the moiety occupying subsite −1. There is only a small difference between the inhibition by the hydroximolactams 20 and 23 , which may be (partially) protonated by the catalytic acid of either anti- or syn-protonating glycosidases, and the imidazole 32 , which can only be protonated by anti-protonating glycosidases. The results strongly suggest that shape requirements must be met by glycosidase inhibitors before they can be used to characterize the proton trajectory of glycosidases.  相似文献   

12.
In an earlier binding study conducted in our laboratory using Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A (formally Thermomonospora fusca E3, E4, and E5), it was observed that binding capacities for these three cellulases were 18–30 times higher on BMCC than on Avicel. These results stimulated an interest in how the difference in accessibility between the two cellulosic substrates would affect synergism observed with cellulase mixtures. To explore the impact of substrate, accessibility on the extent of conversion and synergism, three binary T. fusca cellulase mixtures were tested over a range of cellulase ratios and total molar cellulase concentrations on Avicel and BMCC. Higher extents of conversion were observed for BMCC due to the higher enzyme to substrate ratio resulting from the higher binding The processive endoglucanase, Cel9A, had four times the extent of conversion of the end endocellulase Cel5A, while the exocellulase Cel6B had three times the extent of conversion of Cel5A. Approximately 500 nmol/g of the cel9A+Cel6B mixture was needed to obtain 80% conversion, while the Cel6B+Cel5A and Cel9A+Cel5A mixtures required 1500 and 1250 nmol/g, respectively, to obtain 80% conversion. Thus, it appears that the more accessible structure of BMCC, as reflected by its binding capacity, results in relative higher processive activity.  相似文献   

13.
Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.  相似文献   

14.
The inclusion behavior and concanavalin A binding properties of hepta-antennated and newly synthesized tetradeca-antennated C-6-branched mannopyranosyl and glucopyrannosyl cyclomaltoheptaose (beta-cyclodextrin) derivatives have been evaluated by isothermal titration microcalorimetry and enzyme-linked lectin assay (ELLA), respectively. The synthesis of three first-order dendrimers based on a beta-cyclodextrin core containing 14 1-thio-beta-D-glucose, 1-thio-beta-mannose, and 1-thio-beta-rhamnose residues was performed following a convergent approach and involving (1) preparation of a thiolated bis-branched glycoside building block and (2) attachment of the building block onto heptakis(6-deoxy-6-iodo)-beta-cyclodextrin. Calorimetric titrations performed at 25 degrees C in buffered aqueous solution (pH 7.4) gave the affinity constants and the thermodynamic parameters for the inclusion complex formation of these beta-cyclodextrin derivatives with guests sodium 8-anilino-1-naphthalensulfonate (ANS) and 2-naphthalenesulfonate. The host capability of the persubstituted beta-cyclodextrins decreased with respect to the native beta-CD when sodium 2-naphthalenesulfonate was used as a guest and improved when ANS was used as a guest molecule. Heptavalent mannoclusters based on beta-CD cores enhance the lectin binding affinity due to the cluster effect; however, the increase of the valency from 7 to 14 ligands did not contribute to the improvement of the concanavalin A binding affinity. In addition, the synthesized hyperbranched mannoCDs lost completely the capability as a host molecules.  相似文献   

15.
Cytophaga hutchinsonii was originally isolated from sugarcane piles. This microorganism therefore probably produces an array of enzymes allowing it to digest cellulosic substrates. C. hutchinsonii thus represents a rich source of potentially effective cellulase enzymes that can be harnessed for conversion of biomass to simple sugars. These sugars can then be used as feedstock for ethanol production or other chemical syntheses. In this study, we report the PCR cloning of an endoglucanase gene (Cel9A) from C. hutchinsonii using degenerated primers directed at the catalytic domain. Alignment of the amino acids sequence revealed that Cel9A has a gene structure totally different from the other known cellulose degraders. The most striking feature of this cloned protein is the absence of a cellulose-binding domain (CBD), which to date was believed to be imperative in cellulose hydrolysis. Consequently, the Cel9A gene, encoding β-1,4 endoglucanase from C. hutchinsonii was over-expressed in Escherichia coli with a His-Tag based expression vector. The resulting polypeptide, with a molecular mass of 105 KDa, was purified from cell extracts by affinity chromatography on cellulose. Mature Cel9A was optimally active at pH 5.0 and 45°C. The enzyme efficiently hydrolyzes carboxymethyl-cellulose (CMC). Analysis of CMC and filter paper hydrolysis suggests that Cel9A is a nonprocessive enzyme with endo-cellulase activities.  相似文献   

16.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated as a function of concentrations of electrolytes of different types (NaCl, Na2SO4, and MgSO4). At a constant disjoining pressure of 36 kPa, a constant temperature of 22 degrees C, and a film radius of 100 microm, the film thickness, hw, decreased with an increase in electrolyte concentration until a critical value, Cel,cr, was reached above which hw remained constant. Cel,cr decreased with an increase in electrolyte valency (Cel,cr = 5 x 10(-2) mol.dm(-3) for NaCl and 1 x 10(-2) mol.dm(-3) for Na2SO4 and MgSO4). The reduction in film thickness below Cel,cr could be accounted for by the compression of the electrical double layer. The Pi-hw isotherms below Cel,cr could be fitted using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (constant charge and constant potential cases were considered). At a certain pressure, the film jumped to a Newton black film. The pressure at the jump decreased with an increase in electrolyte valency as a result of the reduction of the electrostatic barrier. At electrolyte (NaCl, Na2SO4, or MgSO4) concentrations higher than Cel,cr, the jump occurred at a low pressure that was independent of the electrolyte type. The thickness of the Newton black film was independent of both the concentration and nature of the electrolytes studied. The results show clearly that the polyfructose loops and tails remain strongly hydrated both in water and in high concentrations of electrolytes of different types, and these results explain the high INUTEC SP1 emulsion stability against coalescence of emulsions prepared under such conditions.  相似文献   

17.
A simple method to calculate dissociation constants for protein-ligand interactions by partial-filling capillary electrophoresis is demonstrated. The method uses raw migration time data for the ligand and needs only additional information about capillary inner radius and the absolute amount of protein loaded. A theoretical study supported by experimental data also demonstrates that the retention of analyte in affinity capillary electrophoresis (ACE) using the partial-filling technique depends linearly on the absolute amount of selector added but is independent of both selector zone length and selector mobility. Factors such as field strength and electroosmotic flow are also cancelled out if they are kept constant. The theory is confirmed and the usefulness of the method is demonstrated by enantioseparations using alpha-acid glycoprotein (AGP) and cellulase (Cel 7A) as chiral selectors.  相似文献   

18.
Affinity ligands for flavoenzymes were synthesized based on the natural structure of flavo-coenzymes. Two typical flavoenzymes, cholesterol oxidase from Brevibacterium sp. and xanthine oxidase from bovine milk, were employed as standard enzymes. Fluorescent probes were synthesized from eight isoalloxazine-like chemicals and 5-aminofluorescein. Probe-enzyme interactions were analyzed via fluorescence spectra. Chemicals with high binding abilities to flavoenzymes were coupled with Sepharose through spacers composed of epichlorohydrin, ethylenediamine, 1,3-diaminopropane, 2-hydroxy-1,3-diaminopropane, and 1,4-diaminobutane, and subjected to adsorption analysis with flavoenzymes. The results indicated that ligands synthesized from 2,4-dioxohexahydropyrimidine-5-carboxylic acid, cytosine, 7-chloroalloxazine, and 8-chloroalloxazine had high binding abilities to the flavoenzymes. The affinity sorbent based on these ligands revealed a high theoretical maximum adsorption (Q(max)). Protein and bioactivity recoveries were tested after one step of affinity binding via chromatographic analysis on small columns. Results showed that ligands linked with sorbents through long hydrophilic spacers had higher activity recoveries.  相似文献   

19.
A series of monovalent and bivalent glycopeptides displaying a C-linked analogue of the Pk trisaccharide, the in vivo ligand for the pentavalent Shiga-like toxin binding subunit (SLT-1B), were prepared and evaluated as ligands for SLT-1B by isothermal titration microcalorimetry and competitive enzyme-linked immunosorbent assay (ELISA). Although none of the monovalent ligands showed any enhancement in affinity compared to O-methyl glycoside, two bivalent ligands show significant enhancements in affinity in assays. This observation represents the first calorimetric observation of an enhancement in affinity for this system. In contrast, only one of the two ligands shows an enhancement in the competitive ELISA. Together, these data signal a difference in the means by which the two ligands achieve affinity, apparently triggered by a change in the nature of the linker domain. These results provide a rationalization for apparently contradictory reports from the recent literature and again emphasize the importance of investigating complex binding phenomena by multiple techniques.  相似文献   

20.
A new method to find novel protein targets for ligands of interest is proposed. The principle of this approach is based on affinity chromatography and combinatorial chemistry. The proteins within a crude rat liver homogenate were allowed to interact with a combinatorial library of phosphinic pseudopeptides immobilized on affinity columns. Betaine: homocysteine S-methyltransferase (BHMT) was one of the proteins that was retained and subsequently eluted from these supports. The phosphinic pseudopeptides, which served as immobilized ligands for the isolation of rat BHMT, were then tested for their ability to inhibit human recombinant BHMT in solution. The most potent inhibitor also behaved as a selective ligand for the affinity purification of BHMT from a complex media. Further optimization uncovered Val-Phe-psi[PO(2-)-CH(2)]-Leu-His-NH(2) as a potent BHMT inhibitor that has an IC(50) of about 1 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号