首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We found the novel photolysis-induced micellization of the poly(tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). PBSt-b-PSt with a molecular weight of Mn(PBSt-b-PSt) = 15,000-b-97,000 showed no self-assembly in dichloromethane and existed as isolated copolymers with a hydrodynamic diameter of 16.6 nm. Dynamic light scattering demonstrated that the copolymer produced micelles with a 63.0 nm hydrodynamic diameter when the copolymer solution was irradiated with a high-pressure mercury lamp at room temperature in the presence of bis(alkylphenyl) iodonium hexafluorophosphate, a photoacid generator. The 1H NMR analysis revealed that the micellization resulted from the photolysis of the PBSt blocks into insoluble poly(vinyl phenol) blocks based on the fact that the signal intensity of the tert-butyl protons decreased over time during the irradiation. It was found that the micellization rapidly proceeded as the degree of the photolysis reached over 50% and was completed at 90%.  相似文献   

2.
The micelle formation of a poly(4-pyridinemethoxymethylstyrene)-block-polystyrene diblock copolymer (PPySt-b-PSt) was investigated in nonselective solvents using bifunctional and trifunctional carboxylic acids. The copolymer showed no self-assembly in 1,4-dioxane and tetrahydrofuran (THF) because the PPySt and PSt blocks were solvophilic to the solvents. Dynamic light scattering studies demonstrated that the copolymer formed micelles in the nonselective solvents in the presence of bifunctional carboxylic acids. Oxalic acid, maleic acid, citric acid, and phospholic acid promoted the micellization, while malonic acid, succinic acid, and glutalic acid had no effect on the micellization. The micellar size, aggregation number, and critical micelle concentration were dependent not only on the acid strength but also on the type of acid and the functionality. The micellization was also affected by the solvent quality. The micellization proceeded more effectively in 1,4-dioxane than in THF. It was found that the micellization occurred by hydrogen bonding between the pyridine moiety and the carboxylic acid and by the interaction among the carboxylic acids. This is because the copolymer needed over an equivalent of the acid to the PySt unit to complete the micellization. Furthermore, monofunctional carboxylic acid such as trichloroacetic acid and trifluoroacetic acid promoted the micellization, although dichloroacetic acid had no effect on the micellization.  相似文献   

3.
Oxidation-induced micellization was attained for a diblock copolymer containing 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO). Poly(4-vinylbenzyloxy-TEMPO)-block-polystyrene (PVTEMPO-b-PSt) showed no self-assembly in carbon tetrachloride, a nonselective solvent. Dynamic light scattering demonstrated that the copolymer self-assembled into micelles of 49.5-nm hydrodynamic diameter when chlorine gas was added to the copolymer solution. The UV and electron spin resonance (ESR) analyses verified that as TEMPO was oxidized into the one-electron oxidant, that is, oxoaminium chloride (OAC) by the chlorine, the nonamphiphilic block copolymer became amphiphilic in nature, and thus, the polymers underwent micellization. An investigation of the relation between the micellization and the oxidation degree of the TEMPO into the OAC revealed that the micellization was induced by only 16% of the OAC. It was confirmed that the POAC-b-PSt micelles were spherical in shape by transmission electron microscopy observation. The micelles served as a two-electron oxidizing agent for benzyl alcohol to quantitatively give benzaldehyde. The micellar structure was maintained after the oxidation of benzyl alcohol without any dissociation into unimers because the OAC was converted into an insoluble hydroxylamine–hydrochloride salt. On the other hand, the micelles reacted with N,N,N′,N′-tetramethyl-1,4-phenylenediamine (TMPD) to produce Wurster’s blue chloride by a one-electron transfer from TMPD to the OAC, converting themselves into PVTEMPO-b-PSt unimers.  相似文献   

4.
A novel micelle formation induced by the photo-Claisen rearrangement was attained using a poly(4-allyloxystyrene)-block-polystyrene (PASt-b-PSt) diblock copolymer. The photoreaction was performed in cyclohexane at room temperature without a catalyst. The conversion of the 4-allyloxystyrene units reached 90% by irradiation for 24 h. The photo-Claisen rearrangement of PASt-b-PSt into poly(3-allyl-4-hydroxystyrene)-block-PSt quantitatively proceeded up to a 20% conversion; however, the elimination of the allyl groups competitively occurred over the 20% conversion. The degrees of the photorearrangement and elimination showed good agreement in their material balance throughout the course of the reaction. Both of the photorearrangement and elimination finally reached ca. 50% degrees over 60% conversion. The light-scattering studies demonstrated that the PASt-b-PSt copolymer with a 36-nm hydrodynamic diameter as unimers formed micelles with a 98-nm diameter by irradiation.  相似文献   

5.
This is the first light scattering study demonstrating that the size of micelles, the aggregation number, and the mobility of the core blocks of the micelles could be controlled by the length of the cross-linker in the micellar cores. The core cross-linked micelles were prepared using a poly[(4-pyridinemethoxy-methyl)styrene]-block-polystyrene (PPySt-b-PSt) diblock copolymer and perfluoroalkyl dicarboxylic acid. The PPySt-b-PSt copolymer formed the micelles in THF, a nonselective solvent, in the presence of the perfluoroalkyl dicarboxylic acid. The light scattering studies demonstrated that the micellar size and aggregation number were dependent on the chain length of the perfluoroalkyl dicarboxylic acid. Perfluoroazelaic acid produced micelles with a larger hydrodynamic radius and higher aggregation number than tetrafluorosuccinic acid. The micellization proceeded through the formation of the pyridinium carboxylate and the cross-linkage between the PPySt blocks via the dicarboxylic acid. The core cross-linked micelles were thermally stable and maintained its structure with changes in the temperature. A 1H NMR analysis revealed that the micelles prepared by perfluoroazelaic acid had more mobility of the core blocks than those by tetrafluorosuccinic acid.  相似文献   

6.
A novel micellization induced by photolysis was attained using a poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in dichloromethane by the irradiation with a high-pressure mercury lamp in the presence of photoacid generators, such as bis(alkylphenyl)iodonium hexafluorophosphate (BAI), diphenyliodonium hexafluorophosphate (DPI), and triphenylsulfonium triflate (TPS). The irradiation time to promote the micellization increased in the order of BAI < DPI < TPS, depending on the UV absorption intensity of the photoacid generators. The efficiency to promote the micellization was also dependent on the block length of the copolymer. Under an identical PBSt block length, the copolymer with the shorter PSt block length more easily formed micelles. The 1H NMR analysis confirmed that the PBSt-b-PSt copolymer was converted into poly(4-vinyl phenol)-block-PSt, resulting in micelles by self-assembly.  相似文献   

7.
Light scattering and transmission electron microscope (TEM) measurements were preformed for micelles of a nonamphiphilic poly(vinylphenol)-block-polystyrene diblock copolymer (PVPh-b-PSt) to determine the shape of the micelles. The micelles were prepared by the self-assembly of the copolymer in 1,4-dioxane, a nonselective solvent, in the presence of 1,4-butanediamine. The logarithm of the normalized time correlation function of the scattered field, lnG1(τ), linearly decayed versus the delay time, τ. The diffusion coefficient measured in the range of the scattering angles from 30° to 150° was almost independent of the square of the magnitude of the scattering vector. The linear decay of lnG1(τ) vs τ and the angular-independence of the diffusion coefficient suggested that the monodisperse spherical micelles were formed by the micellization. The TEM observations confirmed the formation of uniform spheres.  相似文献   

8.
The block copolymer micellization induced by the disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was performed using acids with different acid strengths. A poly(4-vinylbenzyloxy-TEMPO)-block-polystyrene diblock copolymer (PVTEMPO-b-PSt) produced micelles in 1,4-dioxane by the disproportionation of the TEMPO by HNO3, HCl, HClO4, and HSbF6. The acid strength affected the efficiency of the micellization. The acid/VTEMPO molar ratio required for the micellization decreased with an increase in the acid strength: $ {\text{HNO}}_{\text{3}} < {\text{HCl}} < {\text{HClO}}_{\text{4}} < {\text{HSbF}}_{\text{6}} $ . The acid strength also made a difference in the hydrodyamic diameter of the micelles. The stronger acid provided larger micelles. This difference in the micellization was based on the difference in the solubility of the oxoaminium salt formed by the disproportionation of the TEMPO and on the steric hindrance of its counter anion.  相似文献   

9.
The micelle formation of a poly(vinylphenol)-block-polystyrene diblock copolymer was studied in ethyl acetate, a nonselective solvent using α,ω-diamine. The copolymer formed micelles in ethyl acetate in the presence of a small amount of the α,ω-diamine. Light scattering studies demonstrated that the micellization was dependent on the grade, the bulkiness, and the conformation of the diamines. The copolymer needed more diamine with the increasing grade of the diamine, due to a decrease in the basicity of the diamine. The bulkiness of the diamines also reduced the efficiency of the micellization by hindering the formation of the hydrogen bond cross-linking. Similarly, the conformation of the diamine affected the micellization, since the conformation determined the intramolecular spatial distance between the animo groups. Trans-1,2-cyclohexanediamine was more effective than the cis-isomer to produce the micelles. Furthermore, (1S,2S)-(+)-1,2-cyclohexanediamine, one of the mirror image isomers composing the trans-isomer, was more effective in producing the micelles than the trans-isomer. The interaction between the mirror image isomers also obstructed the micellization. The micellization, coupled with the thermoresponsivity of the micelles, were influenced by the solvent quality. The dissociation of the micelles into unimers was suppressed in ethyl acetate, while the reconstruction was promoted, in comparison with those in 1,4-dioxane and THF.  相似文献   

10.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

11.
The micelle formation of poly[(4-pyridinemethoxymethyl)styrene]-block-polystyrene (PPySt-b-PSt) was studied in the nonselective solvent using perfluoroalkyl carboxylic acids. PPySt-b-PSt showed no self-assembly into micelles in THF, because this solvent was nonselective for the copolymer. Dynamic light scattering demonstrated that the diblock copolymer formed the micelles in the solvent in the presence of perfluoroalkyl carboxylic acids in which the number of carbons in the perfluoroalkyl chains was over eight. 1H NMR revealed that the micellization proceeded through the salt formation of the pyridinium perfluoroalkyl carboxylate and through the aggregation of the perfluoroalkyl chains in the counter anions. The hydrodynamic radius and the aggregation number of the micelles increased with an increase in the length of the perfluoroalkyl chain. The copolymer needed less carboxylic acid with longer perfluoroalkyl chain to form the micelles. The copolymer produced the micelles with lower aggregation number and higher critical micelle concentration at higher temperature, although the micellar size was almost independent of the temperature. The micelles were unstable with respect to the variation in the temperature, and were dissociated into the unimers with the increase in the temperature. The micelles, however, were reconstructed by decreasing the temperature. This dissociation–reconstruction of the micelles was controlled reversibly not only by the temperature but also by the concentration of the perfluoroalkyl carboxylic acid. An increase in the acid concentration suppressed the dissociation into the unimers, while promoting the reconstruction of the micelles.  相似文献   

12.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

13.
 The synthesis, viscometric, and fluorescence properties of a water-soluble zwitterionic sulfobetaine copolymer, poly(ADMMAPS)/NA, are reported. When fluorescent hydrophobes (naphthyl group) are incorporated into the zwitterionic copolymer, the photophysical response may effectively probe solution behavior on the microscopic level. Experimental results indicate that I E/I M steadily increases with increases in polymer concentration. I E/I M in aqueous solution is greater than that in aqueous potassium chloride solution. Dynamic light scattering (QELS) measurements show that hydrodynamic diameters of the naphthalene-labeled zwitterionic sulfobetaine copolymer increase with an increasing salt concentration. Viscosity studies reveal that the polymer coil expanded as more salt is added. In fluorescence quenching study, the reduction in the quenching efficiency of Tl+ with salt addition can arise from enhanced compartmentalization of naphthalene labels as added electrolyte enhances intrapolymer micellization. The intrapolymer micelle is easily formed, indicating that the thallium ion has difficulty reacting with bound naphthalenes located in the polymer coil. The naphthalene-labeled zwitterionic sulfobetaine copolymer is depicted as a compacted polymer coil conformation in deionized water because of intra-and inter-associations. Consequently, salt addition breaks up the associations and enhances the intrapolymer micellization. The microscopic and macroscopic behaviors of zwitterionic sulfobetaine copolymer differ a lot from those of the corresponding cationic copolymer. Received: 4 February 1997 Accepted: 1 May 1997  相似文献   

14.
Micelles with azobenzene at the coronas or the cores were prepared by the micellization of nonamphiphilic diblock copolymers through hydrogen bond cross-linking. We used 4-(phenylazophenoxymethyl)styrene (AS) as the azobenzene. A poly(vinylphenol)-block-poly(AS-co-styrene) diblock copolymer (PVPh-b-P(AS-co-St)) was prepared by combination of the nitroxide-mediated living radical polymerization and the hydrolysis. The copolymer contained ca. 1 mol% of the azobenzene units in the P(AS-co-St) blocks on the basis of 1H NMR analysis. The PVPh-b-P(AS-co-St) copolymer showed no micellization in 1,4-dioxane, the nonselective solvent. Dynamic light scattering demonstrated that the copolymer formed micelles in the presence of 1,4-butanediamine (BDA) in this solvent. 1H NMR analysis revealed that the azobenzene moieties were located at the coronas of the micelles, because the signals of the aromatic protons originating from the azobenzene had no changes in the shape and the intensity by the micellization. UV analysis supported the presence of the azobenzene at the micellar coronas. The size of the PVPh-b-P(AS-co-St) micelles was independent of the copolymer concentration. On the other hand, the aggregation number of the micelles was dependent not only on the copolymer concentration but also on the kind of the diamine. A poly(AS-co-vinylphenol)-block-polystyrene diblock copolymer (P(AS-co-VPh)-b-PSt) formed the micelles with the azobenzene at the cores of the micelles by BDA. UV analysis demonstrated that the azobenzene at the micellar cores still had the potential to function as photorefractive switching.  相似文献   

15.
A doubly hydrophilic triblock copolymer poly(acrylic acid)-b-poly(ethylene glycol)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) with M w/M n = 1.15 was synthesized by atom transfer radical polymerization of t-butyl acrylate (tBA), followed by acidolysis of the PtBA blocks. The pH-sensitive micellization of PAA-b-PEO-b-PAA in acidic solution was investigated by potentiometric titration, fluorescence spectrum, dynamic light scattering and zeta potential. The pK a was 6.6 and 6.0 in deionized water and in 0.1 mol/L NaCl solution, respectively. The copolymer formed micelles composed of a weakly hydrophobic core of complexed PAA and PEO and a hydrophilic PEO shell in 1 mg/mL solution at pH < 5.5 due to hydrogen bonding. The critical micelle concentration was 0.168 mg/mL at pH 2.0. At pH < 4.5, steady and narrow distributed micelles were formed. Increasing pH to 5.0, unsteady and broad distributed micelles were observed. At pH > 5.5, the micelle was destroyed owing to the ionization of the PAA blocks.  相似文献   

16.
A poly(vinylphenol)-block-polystyrene diblock copolymer (PVPh-b-PSt) forms micelles in the presence of 1,4-butanediamine (BDA) in 1,4-dioxane, a nonselective solvent. The micellization proceeds through the formation of hydrogen bond cross-linking between the PVPh blocks via BDA, and the dissociation and reconstruction of the micelles is reversibly controlled by temperature. We explored the thermodynamics and kinetics on the micellization of the nonamphiphilic PVPh-b-PSt copolymer by BDA. Light scattering studies demonstrated that an equilibrium existed between the micelles and the unimers. The equilibrium constants were determined for the dissociation and the reconstruction of the micelles on the basis of variation in the aggregation number of the micelles. The equilibrium constant of the dissociation showed a good agreement with the reciprocal of the equilibrium constant of the reconstruction. Based on the equilibrium constants, the standard Gibbs energy, enthalpy, and entropy of the dissociation and reconstruction were estimated. The standard enthalpy was Δ H° = 30–40 kJ mol−1 for the dissociation. The enthalpy of the reconstruction was obtained as a negative value, however, there was a negligible difference in the absolute values of Δ H° between the dissociation and the reconstruction. The rate constant of the micellization was ca. 102 times larger than the back reaction, and increased with a decrease in the temperature.  相似文献   

17.
Poly(D,L-lactide) (PDLLA) microspheres with narrow diameter distribution were prepared by dispersion polymerization of D,L-lactide in xylene/heptane (1:2, v/v) using poly(dodecyl methacrylate)-g-poly(D,L-lactide) (PDMA-g-PDLLA) as a dispersion stabilizer. The particle diameters of PDLLA microspheres were controlled from 200 nm to 5 μm by altering the concentration and the graft chain number of PDMA-g-PDLLA. The effect of the copolymer composition on the particle diameter was investigated to clarify an important factor of the copolymer structure for the control of the particle diameter. As a result, it was necessary for anchor block in diblock copolymer as a dispersion stabilizer to have low solubility in the solution rather than the compatibility with particles. Moreover, we confirmed by dynamic light scattering measurement that PDMA-g-PDLLA formed micelles in the solution. In conclusion, it was clarified that PDLLA microspheres with a wide range of particle diameter were prepared due to the different kinetic stability of micelles.  相似文献   

18.
Amphiphilic fluorescent graft copolymer (PVP‐PyATAm) was successfully synthesized by the free radical copolymerizations of hydrophobic monomer N‐acryloyl‐thioureylene‐4‐(1‐pyrene)‐butyryl amide (PyATAm) with hydrophilic precursor polymers of vinyl‐functionalized poly (N‐vinylpyrrolidone) (Acryloyl‐PVP) in DMF. FT‐IR, 1H NMR, TEM, gel permeation chromatography‐multi‐angle laser light scattering, UV‐vis spectroscopy, viscometric measurement, and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation showed that the copolymer PVP‐ PyATAm formed spherical micelles in an aqueous solution and the size of micelles was between 50 and 70 nm in diameter. The interaction of PVP‐PyATAm copolymer and plasmid DNA was examined by agarose gel electrophoresis and TEM. Results indicated that the copolymer–DNA complexes were self‐assembled and the size of complexes was between 90 and 120 nm in diameter. Cytotoxity studies using MTT colorimetric assays suggested good biocompatibility of PVP‐PyATAm in vitro. These results suggested the potential of this graft copolymer as gene delivery carrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(N-isopropylacrylamide) (PNIPAM)-based tetrafunctional atom transfer radical polymerization (ATRP) macroinitiator (1b) was synthesized via addition reaction of mono-amino-terminated PNIPAM (1a) with glycidol, followed by esterification with excess 2-bromoisobutyryl bromide. Well-defined double hydrophilic miktoarm AB4 star copolymer, PNIPAM-b-(PDEA)4, was then synthesized by polymerizing 2-(diethylamino)ethyl methacrylate (DEA) via ATRP in 2-propanol at 45 degrees C using 1b, where PDEA was poly(2-(diethylamino)ethyl methacrylate). For comparison, PNIPAM-b-PDEA linear diblock copolymer with comparable molecular weight and composition to that of PNIPAM-b-(PDEA)4 was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The pH- and thermoresponsive "schizophrenic" micellization behavior of the obtained PNIPAM65-b-(PDEA63)4 miktoarm star and PNIPAM70-b-PDEA260 linear diblock copolymers were investigated by 1H NMR and laser light scattering (LLS). In acidic solution and elevated temperatures, PNIPAM-core micelles were formed; whereas at slightly alkaline conditions and room temperature, structurally inverted PDEA-core micelles were formed. The size of the PDEA-core micelles of PNIPAM65-b-(PDEA63)4 is much smaller than that of PNIPAM70-b-PDEA260. Furthermore, the pH-induced micellization kinetics of the AB4 miktoarm star and AB block copolymers were investigated by the stopped-flow light scattering technique upon a pH jump from 4 to 10. Typical kinetic traces for the micellization of both types of copolymers can be well fitted with double-exponential functions, yielding a fast (tau1) and a slow (tau2) relaxation processes. tau1 for both copolymers decreased with increasing polymer concentration. tau2 was independent of polymer concentration for PNIPAM65-b-(PDEA63)4, whereas it decreased with increasing polymer concentration for PNIPAM70-b-PDEA260. The chain architectural effects on the micellization properties and the underlying mechanisms were discussed in detail.  相似文献   

20.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号