首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 microm long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U-cell, tapering of the separation channel from a width of 120 down to 30 microm was employed. Electrical insulation was achieved by a 13 microm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 microM rhodamine 110, 8 microM 2,7-dichlorofluorescein, 10 microM fluorescein and 18 microM 5-carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.  相似文献   

2.
Nonaqueous capillary electrophoretic separations were performed under high electric field strengths (up to 2000 Vcm(-1)) in ethanolic background electrolyte solution and the contributions of different band broadening effects to plate height were evaluated. Under optimum conditions, increasing the field strength will provide faster separations and increased separation efficiency. Decrease in the separation efficiency at high field strengths was, however, observed in a previous study and now in the present paper an attempt is made to quantify various band broadening effects by applying a plate height model, which included the contributions of the injection plug length, diffusion, electromigration dispersion, Joule heating, analyte adsorption to the capillary wall, and detector slit aperture length. Of special interest were the contributions of Joule heating and analyte adsorption to the capillary wall. Poly(glycidylmethacrylate-co-N-vinylpyrrolidone)-coated fused-silica capillaries were used with internal diameters (ID) ranging from 30 to 75 microm. The separation efficiencies obtained experimentally were compared with the theoretically calculated efficiencies and fairly good agreement was observed for the 30 microm ID capillary. Relatively large deviation from the predictions of the model was found for the other capillary diameters especially at higher field strengths. The possible reasons for the deviation were discussed.  相似文献   

3.
This study comparts signal enhancement and efficiency in CZK employing three modes of detection: the sleeve cell (a simple method for creating a region of extended path length for absorption detection), the bubble cell (extended light path capillaries), and on-column detection in 75 μm i.d. capillary. Flow profile in the sleeve cell was monitored under a microscope. An abrupt change in capillary diameter in the sleeve cell region (from 50 μm to 220 μm) did not produce extensive band broadening. The sleeve-cell detection arrangement delivered a 3.5 fold increase in corrected peak area when compared with an oil-column detection in 75 μm i.d. column.  相似文献   

4.
The optical characteristics of on-capillary photometric detectors for capillary electrophoresis were evaluated and five commercial detectors were compared. Plots of sensitivity (absorbance/concentration) versus absorbance obtained with a suitable testing solution yield both the linear range and the effective path length of the detector. The detector linearity is a crucial parameter when using absorbing electrolytes, such as for indirect photometric detection, and especially for highly absorbing electrolyte probe ions. The upper limits of the linear ranges (determined as 5% decline in sensitivity) for five commercial detectors ranged from 0.175 to 1.2 AU. The effective pathlength reflects the quality of the optical design of the detector and is equal to the capillary internal diameter only for a light beam passing exactly through the capillary centre, but becomes progressively shorter for imperfect optical designs. The determined effective pathlength for the five investigated detectors ranged from 49.7 to 64.6 microm for a 75 microm I.D. capillary.  相似文献   

5.
An eletrophoretically mediated microanalysis (EMMA) approach, used to perform online chemistry between two small molecules, has been characterized and optimized. The "plug-plug" type EMMA method involved electrophoretic mixing and subsequent reaction of nanoliter plugs of creatinine-containing samples and alkaline picrate (Jaffe reaction) within the confines of the capillary column, which acts as a microreactor. Analyses were performed by pressure injecting a plug of picrate followed by a plug of the creatinine-containing sample. A potential was then applied to electrophoretically mix the two reactants, and an incubation time of up to 6 min allowed the reaction to proceed prior to the application of a 27 kV separation potential with absorbance detection at 485 nm. The use of a 50 microm inner diameter(ID) extended light path capillary (150 microm pathlength) was found to be adequate for determining elevated levels of creatinine in human blood sera, but could not be used to quantify normal levels. Quantification of both normal and elevated levels of creatinine in sera was possible with a 75 microm ID high-sensitivity cell (1200 microm pathlength). Calibration plots using the latter for creatinine in human blood sera spanned the expected clinical range and were linear between 40 microM and 1.2 mM (r2 = 0.996) with an estimated limit of detection of 17 microM (signal-to-noise ratio S/N = 3). A quantitative comparison of results obtained with the reported EMMA method and accepted clinical methodology correlated very well (slope = 1.001).  相似文献   

6.
Shih CM  Lin CH 《Electrophoresis》2005,26(4-5):962-969
The use of single capillaries (25 and 50 microm inner diameter (ID)) and coupled capillaries of different diameters (100-50 and 75-25 microm ID) based on micellar electrokinetic chromatography (MEKC) and sweeping-MEKC modes is compared and reported. Naphthalene-2,3-dicarboxaldehyde (NDA)-derivatized dopamine was selected as the model compound by examining the fluorescence intensity when a violet (410 +/- 7 nm, 2 mW) light-emitting-diode (LED) was used as the light source. When a single capillary (50 microm ID) was used, the detection limit for NDA-derivatized dopamine was determined to be 2.0 x 10(-7) M (Signal-to-nose ratio S/N = 3) based on the MEKC mode. This was improved to 4.0 x 10(-9) M when the sweeping-MEKC mode was applied. In addition, this can be further improved to 1.0 x 10(-9) M and 5.6 x 10(-10) M when 100-50 and 75-25 microm ID coupled capillaries are used. The use of the coupled capillary is also helpful for improving the separation efficiency. Based on the sweeping-MEKC mode, the number of theoretical plates (N) for the detected peaks were determined to be 6.3 +/- 2.7 x 10(5) by means of a single capillary (50 microm ID). This can be improved to 9.4 +/- 3.6 x 10(5) and 9.4 +/- 0.9 x 10(6) when the 100-50 and 75-25 microm ID coupled capillaries were applied.  相似文献   

7.
Capillary electrophoretic separations have been investigated for six controlled narcotic analgesic compounds having related structures. Owing to the similar charge-to-mass ratios of these compounds, capillary zone electrophoresis failed to provide a satisfactory separation, whereas a baseline-resolved separation was achieved in 10 min using micellar electrokinetic chromatography. Column efficiencies of 40,000-150,000 plates/m were obtained with a 50 cm long, 50 microm inner diameter (ID) capillary using 50 mM sodium dodecyl sulfate (SDS) in a 50 mM borate solution containing 12% isopropanol. In contrast, separation of this mixture by capillary electrochromatography proved to be significantly superior. The capillary was 15 cm long, with an ID of 75 microm, and was packed with 1.5 microm nonporous octadecyl silica (ODS) particles. The mobile phase consisted of 80% 10 mM tris(hydroxymethyl)aminomethane (Tris) and 20% acetonitrile, and contained 5 mM SDS. A complete separation was obtained in 2.5 min with an efficiency of 250,000-500,000 plates/m.  相似文献   

8.
Lee JH  Choi OK  Jung HS  Kim KR  Chung DS 《Electrophoresis》2000,21(5):930-934
An efficient separation of eleven nonprotein amino acids (NPAAs) and three protein amino acids containing aromatic moieties was achieved by capillary electrophoresis without derivatization. The fourteen amino acids were well separated with a 100 mM sodium phosphate run buffer (pH 2.0) using a 57 cm fused-silica capillary (50 microm ID, 50 cm effective length) at 20 degrees C. With an electric field of 351 V/cm, the time needed for the separation was less than 20 min. Under optimum conditions, excellent linear responses were obtained in the concentration range of 5-100 microM, with the linear correlation coefficient ranging from 0.9785 or greater. The relative standard deviations of the migration times and the corrected peak areas were found to be 1.5-3.9% and 8.0-11.5%, respectively. In order to improve the limit of detection (LOD), simple stacking and large volume stacking using an EOF pump (LVSEP) methods were used. Improved LODs were about 300 nM in stacking and below 15 nM for five small NPAAs in LVSEP.  相似文献   

9.
In this study, peak-broadening effects caused by nebulizing gas flow and lack of temperature control have been investigated for separation capillaries with three different inner diameters. The study was performed with serial UV/ESI-MS detection in an effort to distinguish between peak broadening arising in the separation and peak broadening arising in the ion source. The nebulizing gas was found to significantly affect both migration time and separation efficiency when using capillaries with 50 and 75 microm id. If the nebulizing gas is on during injection, the injection volume increases to such an extent that significant peak broadening is induced. Reducing the id to 25 microm minimizes the parabolic flow induced by the nebulizing gas. Results indicate that the nebulizing gas pressure can be optimized to minimize peak broadening in the ion source. A decrease in detection sensitivity, possibly related to the orthogonal design of the interface, was observed when the nebulizing gas pressure was increased. A tapered capillary tip was found to provide superior separation efficiency as well as sensitivity.  相似文献   

10.
In indirect photometric detection in capillary electrophoresis, the concentration of the absorbing probe ion in the background electrolyte should be as high as possible in order to increase the dynamic range of the detection method. For relatively low absorptivity probes (epsilon < 2000 L mol(-1)cm(-1)) used under typical conditions (75 microm ID capillary) the maximum probe concentration is normally limited by the separation current. However, for medium (epsilon approximately/= 2000-15000 L mol(-1)cm(-1)) and especially for high (epsilon > 15000 L mol(-1)cm(-1)) absorptivity probes such as dyes, the maximum concentration may be limited by the background absorbance of the electrolyte which must fall within the linearity range of the detector. In this work, it is shown that another practical factor limiting the probe concentration is the adsorption of probe onto the capillary wall at higher concentrations, resulting in unstable baseline and increased noise. Use of a zwitterionic surfactant to suppress adsorption enabled the concentration of a model probe anion (tartrazine) to be increased by a factor of six times (to 3 mM). This resulted in significant improvements in peaks shapes, resolution between peaks, detection sensitivity and linear calibration range for the analyte anions. Baseline separation of a test mixture was maintained up to 7.5 mM total concentration of sample coions injected (13.7 nL) for the 3 mM electrolyte, with detection limits ranging from 0.63 to 0.94 microM. Peak height reproducibility (over 20 consecutive injections) was improved (values ranging from 1.1 to 1.9%) compared with electrolytes containing lower concentrations of the probe. Overall, the optimised, higher concentration probe electrolyte provided the sensitivity benefits of highly absorbing probes with the additional benefits of ruggedness and improved stacking, peak shapes and resolution.  相似文献   

11.
Ways of utilizing the true separation efficiency of monolithic silica (MS) columns were studied. The true performance of MS columns, both regular-sized (rod-type clad with PEEK resin, 4.6 mm ID, 10 cm) and capillary sized (in 100 or 200 microm ID fused silica capillary, 25-140 cm) was evaluated by calculating the contribution of extra-column effects. HETP values of 7-9 microm were observed for solutes having retention factors (kvalues) of up to 4 for rod columns and up to 15 for a capillary column. The high permeability of MS columns allowed the use of long columns, with several connected together in the case of rod columns. Narrow-bore connectors gave good results. Peak variance caused by a column connector ranges from 50 to 70% of that caused by one rod-type column for up to three connectors or four columns in 80% methanol, but the addition of a 4th or 5th connector to add a 5th and 6th column, respectively, caused a much greater increase in peak variance, especially for long-retained solutes, which is greater than the variance caused by one rod column. Rod columns seem to show slightly lower efficiency at a pressure higher than 10 MPa or so. The use of acetonitrile-water as a mobile phase better preserved the ability of individual rod columns to generate up to 100,000 theoretical plates with 14 columns connected. Methods for eliminating extra-column effects in micro-HPLC were also studied. Split injection and on-column detection resulted in optimum performance. A long MS capillary measuring 140 cm produced 160,000 theoretical plates. The column efficiency of a capillary column was not affected by the pressure, showing advantages over the rod columns that exhibited peak broadening caused by connectors and pressure.  相似文献   

12.
The development and validation of an optimized capillary electrophoresis method for the determination of metacycline in the presence of its related substances by capillary electrophoresis is shown. The influence of methanol as organic modifier, buffer pH, buffer concentration, capillary length, column temperature, Triton X-100 and methyl-beta-cyclodextrin was investigated. A central composite design was performed in order to optimize the method. The optimal separation conditions were: uncoated fused-silica capillary (39 cm total length, 31 cm effective length, 50 microm ID); as background electrolyte a solution of 160 mM sodium carbonate and 1 mM EDTA (pH 10.35)/methanol (89:13 v/v); temperature, 15 degrees C; voltage, 12 kV. The method showed good selectivity, repeatability, linearity, and sensitivity. The limits of detection and quantitation are 0.024% and 0.06%, respectively, relative to a 2.5 mg/mL solution. Six commercial samples were analyzed quantitatively.  相似文献   

13.
Incorporation of long path length liquid waveguide capillary cell (LWCC or LCW) into spectrometric detection systems can increase the sensitivity of these by orders of magnitude (up to 500 times), and consequently can reduce the detection limits. The combination of the long path length spectrophotometry with flow methodologies can provide analytical solutions for various challenges in the field of environmental, biochemical and food chemistry.  相似文献   

14.
Potentiometric end-capillary detection in capillary electrophoresis has the advantage of relatively easy miniaturisation without having to compromise the concentration sensitivity. Potentiometric end-capillary detection using a copper electrode is also attractive because of the sensitive detection of many inorganic and organic UV-transparent ions and the ability to work in both direct and indirect mode. In this work, detection of a number of common anions in a tartrate electrolyte at pH 3 was studied. The influence of the end-capillary detection geometry on the detection performance was investigated. An end-capillary detection cell allowing the separation capillary to be changed without the need to realign the detection electrode was constructed and fitted into a commercial CE apparatus. Under the optimal configuration, which was a 25 microm diameter copper electrode aligned coaxially with a 25 microm capillary and positioned at a distance of about 25 microm from the capillary end, excellent peak shapes were achieved and comparison with simultaneous on-capillary photometric detection showed no additional peak broadening. Good sensitivity was obtained, resulting in concentration limits of detection (LODs) in the low microM range and mass LODs in the low amol range. Examples of separations of inorganic and organic anions are presented and the analytical potential of the detection method is assessed.  相似文献   

15.
Cao W  Liu J  Yang X  Wang E 《Electrophoresis》2002,23(21):3683-3691
A new end-column electrochemiluminescence (ECL) detection technique coupling to capillary electrophoresis (CE) is characterized. A 300 microm diameter Pt working electrode was used to directly couple with a 75 microm inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy) 3 2+ showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy) 3 2+ in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 microm capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 220-260 microm. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 microm capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 x 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 x 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-8) mol/L.  相似文献   

16.
An on-line preconcentration method using a polymeric monolithic support is proposed for the retention of the decapeptide angiotensin I and its subsequent analysis by CZE. Monolithic capillary columns were prepared in fused-silica (FS) capillaries of 150 microm id by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iron protoporphyrin IX (Fe-ProP). Monolithic microcolumns (8 mm long) were coupled on-line to the inlet of the separation capillary (FS capillary, 75 microm id x10 cm from the inlet to the microcolumn and 27 cm from the microcolumn to the detector). Angiotensin I was released from the sorbent by a 50 mM sodium phosphate, pH 2.5/ACN, 75:25 v/v solution and then analyzed by CZE with UV absorption detection at 214 nm. The concentration LOQ (CLOQ) was 0.5 ng/mL. The Fe-ProP-derivatized monolithic microcolumn coupled to the separation capillary exhibited a high retention capacity for peptide angiotensin I, and showed as much as 10,000-fold improvement in concentration sensitivity.  相似文献   

17.
K Kitagishi  Y Sato 《Electrophoresis》2001,22(16):3395-3400
In capillary electrophoresis (CE), light flux passes through a capillary cell and is in most cases detected photometrically. Due to the thinness of the cell, a part of the light passes through the wall and misses hitting the sample. In most CE apparatuses, incident light is focused by converging lenses in order to condense light beams passing through the capillary. Considering the aberration of lenses and lens effects of capillary, we assumed that light beams inside were approximately parallel. Although the path lengths of light beams vary depending on their tracks, we could estimate the virtual light path length, L, by measuring absorbance when concentration and molar absorptivity of the sample solution were known. A light-restricting device consisting of narrow slits makes effectively L longer and signal intensity higher. On the other hand, noise increases as light width narrows. The signal-to-noise ratio showed a maximum at 68 microm of light width for a capillary with diameter of 75 microm. The optimized L was evaluated by the simulation. The experimental data verified it even in indirect UV detection. Our approach could help to design the optics of CE apparatuses.  相似文献   

18.
The separation and simultaneous determination of caffeine, paracetamol, and acetylsalicylic acid in two analgesic tablet formulations was investigated by capillary electrochromatography (CEC). The effect of mobile phase composition on the separation and peak efficiency of the three analytes was studied and evaluated; in particular, the influence of buffer type, buffer pH, and acetonitrile content of the mobile phase was investigated. The analyses were carried out under optimized separation conditions, using a full-packed silica capillary (75 microm ID; 30.0 cm and 21.5 cm total and effective lengths, respectively) with a 5 microm C8 stationary phase. A mixture of 25 mM ammonium formate at pH 3.0 and acetonitrile (30:70 v/v) was used as the mobile phase. UV detection was at 210 nm. Good linearity was found in the range of 50-200, 20-160, and 4-20 microg/mL for acetylsalicylic acid (r2=0.9988), paracetamol (r2=0.9990) and caffeine (r2=0.9990), respectively. Intermediate precision (RSD interday) as low as 0.1-0.8% was found for retention times, while the RSD values for the peak area ratios (Aanalyte/AIS) were in the range of 1.9-2.9%. The optimized CEC method was applied to the analysis of the studied compounds present in commercial tablets.  相似文献   

19.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

20.
Read length in DNA sequencing by capillary electrophoresis at elevated temperatures is shown to be greatly affected by the extent of hydrophobicity of the polymer separation matrix. At column temperatures of up to 80 degrees C, hydrophilic linear polyacrylamide (LPA) provides superior read length and separation speed compared to poly(N,N-dimethylacrylamide) (PDMA) and a 70:30 copolymer of N,N-dimethylacrylamide and N,N-diethylacrylamide (PDEA30). DNA-polymer and polymer intramolecular interactions are presumed to be a major cause of band broadening and the subsequent loss of separation efficiency with the more hydrophobic polymers at higher column temperatures. With LPA, these interactions were reduced, and a read length of 1000 bases at an optimum temperature of 70 degrees -75 degrees C was achieved in less than 59 min. By comparison, PDMA produced a read length of roughly 800 bases at 50 degrees C, which was close to the read length attained in LPA at the same temperature; however, the migration time was approximately 20% longer, mainly because of the higher polymer concentration required. At 60 degrees C, the maximum read length was 850 bases for PDMA, while at higher temperatures, read lengths for this polymer were substantially lower. With the copolymer DEA30, read length was 650 bases at the optimum temperature of 50 degrees C. Molecular masses of these polymers were determined by tandem gel permeation chromatography-multiangle laser light scattering method (GPC-MALLS). The results indicate that for long read, rapid DNA sequencing and analysis, hydrophilic polymers such as LPA provide the best overall performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号