首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenylmethylsiloxane (PPMS) as a novel coating for solid-phase microextraction (SPME) combined with microwave-assisted extraction (MAE) has been applied to determine the concentrations of organochlorine pesticides (OCPs) in Chinese teas. The characteristics of PPMS fiber, the extraction modes of SPME, the extraction time, temperature, and salt effects were investigated. Microwave irradiation time and power were also studied. Compared with commercial polydimethylsiloxane (PDMS) fiber and homemade sol-gel polymethylsiloxane (PMS) fiber, the novel porous sol-gel PPMS fiber exhibited high sensitivity and selectivity for OCPs compounds, higher thermal stability (to 350 degrees C) and long service life (more than 150 times). The recoveries of MAE is compared with that of ultrasonic extraction (USE), MAE-SPME-gas chromatography (GC)/electron-capture detection (ECD) methods showed better results for Chinese teas. Linear ranges of OCPs in the blank green tea was 0.1-10(3) ng/l. Detection limits of this method are below 0.081 ng/l. Recoveries of this method are between 39.05 and 94.35%. The repeatability of the technique was less than 16% relative standard deviation (R.S.D.). The tested pesticides in three Chinese teas were at the ng/g level.  相似文献   

2.
A ceramic/carbon composite was developed and applied as a novel coating for solid-phase microextraction (SPME). The ceramic/carbon coating exhibited several good properties for SPME, such as high extraction quantities and enhanced thermal and organic solvent stability. Under scanning electron microscopy (SEM), the tightly attached coating layer on stainless steel wire revealed excellent mechanical characteristics. Single fiber and fiber-to-fiber reproducibility were less than 6.9 and 9.5%, respectively. The effects of extraction and desorption parameters such as extraction time, stirring rate, ionic strength, and desorption temperature and desorption time on the extraction/desorption efficiency were investigated and optimized. Coupled to gas chromatography with a flame thermionic detector, the optimized SPME method was applied to the analysis of organophosphorus pesticides (OPPs) in aqueous samples. The calibration curves were linear from 0.05 to 200 ng mL(-1) for fenchlorphos, pirimiphos-methyl, chlorpyrifos, ethion and from 0.2 to 200 ng mL(-1) for quinalphos, and the limits of detection were between 5.2 and 34.6 ng L(-1). The recovery of the OPPs spiked in real water samples at 5 ng mL(-1) ranged from 86.2 to 103.4% and the relative standard deviations were less than 8.5%.  相似文献   

3.
A new sol–gel hybrid coating, polydimethylsiloxane–2-hydroxymethyl-18-crown-6 (PDMS–2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 μm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 °C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 °C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N = 3) of the OPPs with the new sol–gel hybrid material ranged from 4.5 to 4.8 ng g−1, which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol–gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.  相似文献   

4.
A novel solid-phase microextraction (SPME) fiber coating was prepared with siloxane-modified polyurethane acrylic resin by photo-cured technology. The ratio of two monomers was investigated to obtain good microphase separation structure and better extraction performance. The self-made fiber was then applied to organophosphorus pesticides (OPPs) analysis and several factors, such as extraction/desorption time, extraction temperature, salinity, and pH, were studied. The optimized conditions were: 15 min extraction at 25 °C, 5% Na2SO4 content, pH 7.0 and 4 min desorption in GC inlet. The self-made fiber coating exhibited better extraction efficiency for OPPs, compared with three commercial fiber coatings. Under the optimized conditions, the detection limits of 11 OPPs were from 0.03 μg L−1 to 0.5 μg L−1. Good recoveries and repeatabilities were obtained when the method was used to determine OPPs in ecological textile.  相似文献   

5.
A method based on immersed solid-phase microextraction (SPME) and gas chromatography mass spectrometry detection (GC-MS) for the determination of organophosphorous pesticides (OPPs) in aqueous samples was developed. A sol-gel based coating fiber was prepared using 3-(trimethoxysilylpropyl) amine as precursor. The synthesized fiber was prepared in a way to impart polar moiety into the coating network and would be more suitable for extracting polar and semi-polar organic pollutants. Important parameters influencing the extraction process were optimized and an extraction time of 40 min at 30 °C gave maximum peak area, when NaCl (20% w/v) was added to the aqueous sample. The linearity for disulfoton, phorate and sulfotep was in the concentration range of 0.01 to 5 ng mL− 1 and for parathion and O,O,O-triethylthiphosphate was in the range of 0.01 to 50 ng mL− 1. Limits of detection ranged from 1 ng L− 1, for parathion, to 0.05 ng L− 1, for disulfoton using time-scheduled selected ion monitoring (SIM) mode, and the RSD% values were all below 10.5% at the 1 ng mL− 1 level. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples were from 80 to 115%.  相似文献   

6.
A method based on solid-phase microextraction and gas chromatography flame photometric detector for the determination of organophosphorus pesticides (OPPs) in food samples was described. Three kinds of vinyl crown ether polar fibers were prepared with sol-gel process and used for the analytes. The new coatings showed higher extraction efficiency and sensitivity for organophosphorus pesticides compared with commercial fibers—85 μm PA and 65 μm PDMS-DVB. Specifically, the benzo-15-crown-5 coating was the most effective for the target analytes. Several factors affecting the performance of SPME such as extraction temperature and time, salt addition, and dilution ratios of samples were optimized. The apparent recoveries of spiked food samples (apple juice, apple and tomato) were determined to be over 55.3% and the limits of detection (LODs) were in the range of 0.003-0.09 ng/g for the OPP studied. The method was applied to determine the concentrations of OPP in real food samples.  相似文献   

7.
观文娜  许峰  廉玫  徐媛  关亚风 《色谱》2007,25(5):614-618
采用溶胶-凝胶技术制备了聚甲基三氟丙基硅氧烷(PTFPMS)涂层,并将其作为萃取  相似文献   

8.
A novel dihydroxy-terminated benzo-15-crown-5 is synthesized and applied to prepare the solid-phase microextraction (SPME) fiber coating with sol-gel technology. Headspace SPME, as a simple, solvent-free method, is applied to the analysis of 16 organochlorine pesticides (OCPs) present at trace levels in a water sample. A homemade crown ether fiber coated with 80- micro m thickness was used for extraction. Analyses are performed using gas chromatography-electroncapture detection. The optimization of the extraction process is studied. Compared with commercially available SPME fibers, polydimethylsiloxane, the new phases show better selectivity and sensitivity toward OCPs. The linear concentrations range from 1 to 1000 ng/L, the detection limits are in the range of 0.01-0.5 ng/L, the recoveries are over 85%, and relative standard deviations are below 7.2% for these OCPs.  相似文献   

9.
Amphiphilic and hydrophilic oligomers were synthesized and coated on fused silica capillaries using a sol-gel technique. Sol-gel-coated capillaries were evaluated for the solid-phase microextraction and preconcentration of a wide variety of non-polar and polar analytes. Both types of coatings were stable under high temperature (up to 280 degrees C). The extraction efficiency of the sol-gel coatings was evaluated for the extraction of both non-polar and polar analytes, including organochlorine pesticides, triazine herbicides, estrogens and alkylphenols (APs) and bisphenol-A (BPA). Compared with commercially available solid-phase microextraction (SPME) adsorbents such as poly(dimethylsiloxane)divenylbenzene and polyacrylate, the new materials showed comparable selectivity and sensitivity towards both non-polar and polar analytes. The new coatings gave good linearity and detection limits. For example with triazines, a detection limit of <0.005 microl l(-1), precision from 5.0 to 11.0% (n = 6) and linearity of the calibration plots (0.5 to 50 microl l(-1)) were obtained. The sol-gel coated SPME capillaries were used for the determination of triazine herbicides in reservoir water samples collected in Singapore.  相似文献   

10.
The feasibility of circulating cooling-solid phase microextraction (CC-SPME) combined with gas chromatography-nitrogen phosphorous detector (GC-NPD) for the determination of five organophosphorous pesticides (OPPs) in tomato samples is evaluated. By heating the sample while cooling the fiber coating, the developed method provides better performance in terms of sensitivity, linearity and recovery than that of traditional headspace-solid phase microextraction (HS-SPME). The extraction capacities of activated carbon fiber (ACF) and three commercially available fibers were compared. ACF is found to be the most suitable fiber for the analysis of OPPs in tomatoes. The main factors affecting the CC-SPME process such as adsorption time, adsorption temperature and ionic strength were investigated and optimized. The matrix effect was evaluated, and concluded that addition of water is required to reduce the matrix effect. Good linearity (R 2 > 0.992) is observed in the 1–200 ng g−1 concentration range with satisfactory RSD (%) values of 5.6–8.5%. The limits of detection obtained using the proposed method range from 0.2 to 0.5 ng g−1, and the recoveries for CC-SPME are in the range of 82.5–90.0% with RSDs lower than 8.7%. Experimental results confirm the usefulness of the proposed method for the analysis of OPPs in tomato samples.  相似文献   

11.
A sensitive and efficient solid-phase microextraction (SPME) method for the determination of organophosphorous (OPPs) and pyrethroid pesticides (Pyrs) in aquaculture-seawater samples by using GC with MS/MS (GC-MS/MS) was developed. Dichlorvos and chlorpyrifos (OPPs); permethrin, alpha-cypermethrin and deltamethrin (Pyrs) were selected according to their use as chemotherapeutants in the aquaculture industry. Different parameters affecting extraction efficiency such as fibre coating, agitation, pH and extraction time profiles were investigated. An experimental central composite design (alpha = 1) and desirability functions were used for the simultaneous optimization of extraction temperature and sample volume. Finally, a method based on direct SPME in 40 min at 75 degrees C using 100-microm-thick poly(dimethyl)siloxane (PDMS) fibre and 20 mL of sample volume is proposed. The method was validated, exhibiting good linearity, precision and accuracy parameters with picogram per millilitre LODs. The proposed methodology was applied to determine the ultratrace levels of OPPs and Pyrs in aquaculture-seawater samples by the standard addition approach, which proved to be reliable and sensitive, in addition to requiring only small amounts of sample.  相似文献   

12.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   

13.
A method based on solid-phase microextraction and gas chromatography flame photometric detector for the determination of organophosphorous pesticides (OPPs) in aqueous samples was described. Five kinds of commercially available fibers-7, 30 and 100 mum PDMS, 85 mum PA and 65 mum PDMS-DVB-were compared and 100 mum PDMS and 85 mum PA were the most sensitive fiber coatings for the analytes. The extraction time, extraction temperature, pH and content of NaCl were found to have significant influence on extraction efficiency. The optimized conditions were 100 mum PDMS fiber, 30 min extraction time at 40 degrees C, with 3% NaCl content and no pH adjustment. The linear range was 0.5-100 mug l(-1) for most of the analytes. The limits of detection (LODs) ranged from 0.049 mug l(-1) (for parathion) to 0.301 mug l(-1) (for carbophenothion) and RSD% of repeatability at the 10 mug l(-1) level were all below 8%. Environmental water samples were analyzed, but none of the analytes was detected. The recovery of spiked water samples was from 75.3 to 102.6%.  相似文献   

14.
A simple and sensitive method for the determination of polar pesticides in water and wine samples was developed by coupling automated in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). To achieve optimum performance, the conditions for both the in-tube SPME and the ESI-MS detection were investigated. In-tube SPME conditions were optimized by selecting the appropriate extraction parameters, especially the stationary phases used for SPME. For the compounds studied, a custom-made polypyrrole (PPY)-coated capillary showed superior extraction efficiency as compared to several commercial capillaries tested, and therefore, it was selected for in-tube SPME. The influence of the ethanol content on the performance of in-tube SPME was also investigated. It was found that the amount of pesticides extracted decreased with the increase of ethanol content in the solutions. The ESI-MS detection conditions were optimized as follows: nebulizer gas, N2 (30 p.s.i.; 1 p.s.i.=6894.76 Pa); drying gas, N2 (10 l/min, 350 degrees C); capillary voltage, 4500 V; ionization mode, positive; mass scan range, 50-350 amu; fragmentor voltage, variable depending on the ions selected. Due to the high extraction efficiency of the PPY coating and the high sensitive mass detection, the detection limits (S/N = 3) of this method for the compounds studied are in the range of 0.01 to 1.2 ng/ml, which are more than one order of magnitude lower than those of the previous in-tube SPME-HPLC-UV method. A linear relationship was obtained for each analyte in the concentration range of 0.5 to 200 ng/ml with MS detection. This method was applied to the analysis of phenylurea and carbamate pesticides in spiked water and wine samples.  相似文献   

15.
固相微萃取-气相色谱法测定红葡萄酒中残留的有机磷农药   总被引:22,自引:0,他引:22  
胡媛  刘文民  周艳明  关亚风 《色谱》2006,24(3):290-293
采用溶胶-凝胶包埋技术制备了耐高温固相微萃取头(SPME),用该萃取头与气相色谱-热离子化检测器联用对红葡萄酒中的12种有机磷农药残留进行了测定。实验中对搅拌速度、萃取时间、盐浓度等条件进行了优化。结果表明,在样品用量25 mL,搅拌速度1250 r/min,盐浓度 150 g/L,萃取时间30 min的条件下,绝大多数组分峰面积的相对标准偏差(RSD)在5%以下,各种有机磷农药的检测限为5 ng/L到0.38 μg/L。  相似文献   

16.
Solid-phase microextraction coupled to liquid chromatography and mass spectrometry (SPME-LC-MS) was used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. SPME was performed by direct extraction on a PDMS/DVB (60 microm) coated fiber, employing a stirring rate of 1200 rpm for 30 min, pH 11.0, and temperature of 30 degrees C. Drug desorption was carried out by exposing the fiber to the liquid chromatography mobile phase for 20 min, using a labmade SPME-LC interface at 50 degrees C. The main variables experimentally influencing LC-MS response were evaluated and mathematically modeled. A rational optimization with fewer experiments was achieved using a factorial design approach. The constructed empirical models were adjusted with 96-98% of explained deviation allowing an adequate data set comprehension. The chromatographic separation was realized using an RP-18 column (150 mm x 2.1 mm, 5 microm particles) and ammonium acetate buffer (0.01 mol/l, pH 5.50) : acetonitrile (50 : 50 v/v) as mobile phase. Low detection levels were achieved with electrospray interface (0.1 ng/ml). The developed method showed specificity, linearity, precision, and limit of quantification adequate to assay tricyclic antidepressant drugs in plasma.  相似文献   

17.
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.  相似文献   

18.
This work compares two miniaturised sample preparation methods, solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HF-LPME), in combination with gas chromatography coupled to tandem mass spectrometry with a triple quadrupole analyzer for the determination of 77 pesticides in drinking water. In the case of SPME, extraction temperature and time were optimized by experimental design, although other parameters, as desorption time, pH, and ionic strength, were also evaluated. The extraction and desorption solvents [octanol/dihexyl ether (75:25, v/v) and cyclohexane, respectively], as well as the extraction and desorption time, ionic strength, and pH, were studied for the HF-LPME procedure. Under the optimal conditions, recoveries (70.2–113.5% for SPME and 70.0–119.5% for HF-LPME), intra-day precision (2.1–19.4% for SPME and 4.3–22.5% for HF-LPME), inter-day precision (5.2–21.5% for SPME and 8.4–27.3% for HF-LPME), and limits of detection, between 0.1 and 28.8 ng/L for SPME and 0.2 and 47.1 ng/L for HF-LPME and overall uncertainty (9.6–25.2% for SPME and 13.3–27.5% for HF-LPME) were established for both extraction procedures. Finally, the proposed methods were successfully applied to the analysis of 41 drinking water samples, and similar results were obtained with both extraction approaches.  相似文献   

19.
A solid-phase microextraction (SPME) method for the simultaneous determination of a large number of pesticides (46) with a wide range of polarities and chemical structures (organochlorine, organophosphorous, triazines, pyrethroids and others) in water samples by GC-MS has been developed. Three different fibres and parameters that influence the extraction and desorption efficiency were studied. The selected conditions were: a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 45 min of extraction time, sample agitation and temperature control at 60 degrees C; neither pH adjustment nor ionic strength correction were applied. Good detection limits, linearity and repeatability were obtained with this method for the 46 pesticides studied. The method was validated for 29 pesticides following the recommendations of the international norm ISO/IEC 17025 including the calculation of the uncertainties. The detection limits ranged from 4 to 17 ng l(-1). Furthermore, repeatability (6.9-20.5%) and intermediate precision (4.5-19.7%) were shown to be satisfactory. To validate matrix effects for drinking and surface water analytical recoveries were calculated for these matrices. The accuracy of the method was also evaluated by participating in a proficiency inter-laboratory test.  相似文献   

20.
A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl)propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The applicability of the prepared fiber coating in conjunction with gas chromatography-mass spectrometry was examined by SPME of polycyclic aromatic hydrocarbons, as model analytes, from aquatic media. An extraction time of 20 min at 50 °C gave maximum peak areas when NaCl, 15% was added to the aqueous samples. Limits of detection were in the range of 0.01-0.02 ng/mL and relative standard deviation values were in the range of 4-16% at 1 ng/mL. The developed method was successfully applied for the analysis of real water samples while the relative recovery percentage was in the range of 102-118%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号