首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five macrocycle-oxoanion adducts have been isolated from aqueous solutions containing 1,4,7,10,13,16-hexaazacyclooctadecane ([18]aneN(6), L) and phosphoric acid whose pH had been adjusted to selected values in the 1-8 range. Four products, (H(6)L)(H(2)PO(4))(6).2H(3)PO(4) (1), (H(6)L)(H(2)PO(4))(6) (2), (H(4)L)(H(2)PO(4))(4).2H(2)O (4), and (H(4)L)(HPO(4))(2).7H(2)O (5) crystallized from aqueous solutions at pH 1, 3, 6, and 8, respectively, while (H(4)L)(H(2)PO(4))(4) (3) crystallized on diffusion of EtOH into an aqueous reaction mixture at pH 6. Single-crystal X-ray structure determinations enabled an examination of supramolecular interactions between protonated forms of [18]aneN(6), phosphoric acid and its conjugate bases, and water of solvation. The macrocycle adopts a variety of conformations in order to accommodate the supramolecular constructs formed by the oxoanions and solvent molecules as the relative proportions of interacting species are altered. At pH 1 and 3, the fully protonated macrocycle, [LH(6)](6+), is found with six H(2)PO(4)(-) anions. At pH 6 and 8, the tetraprotonated macrocycle, [LH(4)](4+), crystallizes with four H(2)PO(4)(-) and two HPO(4)(2)(-), respectively. Variations in the solute of crystallization are evident, with phosphoric acid being present at the lowest pH and water at pH 6 and 8. In 5, the seven unique water molecules form a string-of-pearls motif within which a new heptameric isomer, consisting of a water pentamer that uses a single water to interact with the other two unique water molecules, is found. Structures 1, 2, 4, and 5 exhibit eta-3 H-bonding of ammonium protons to a single oxygen of the guest phosphates located above and below the macrocyclic ring. In 3, two phosphate oxygens of the cavity anion interact with the macrocycle, one of which participates in eta-2 H-bonding with ammonium groups.  相似文献   

2.
Two new three-dimensional open-framework cobalt phosphates, [C2N2H10]2[Co4(PO4)4]H2O, I, and [C4N3H16]3-[Co6(PO4)5(HPO4)3]H2O, II, have been prepared by the reaction of amine phosphates with Co2+ salts. I could also be prepared by the reaction of the cobalt tris amine complex with H3PO4. The crystal data for I and II are as follows: phosphate I, orthorhombic, space group P2(1)2(1)2(1) (no. 19), a = 10.277 (1) A, b = 10.302 (1) A, c = 18.836 (1) A, V = 1994.2 (2) A3, Z = 4; phosphate II, monoclinic, space group P2(1)/c (No. 14), a = 31.950 (1) A, b = 8.360 (1) A, c = 15.920 (1) A, beta = 96.6 (1) degrees V = 4223.4 (2) A3, Z = 4. The structures of both I and II are constructed from alternating CoO4 and PO4 tetrahedra. The connectivity leads to the formation of eight-membered channels in all the crystallographic directions resembling the aluminosilicate zeolite, merlinoite in the case of I and to a rather large, one-dimensional 16-membered channel in II. Strong hydrogen-bond interactions involving the amine and framework oxygen are present in both I and II.  相似文献   

3.
Structural Chemistry - A reversible phase transition in 2-methyl-5-nitroanilinium dihydrogen phosphate, (H2m5na)H2PO4, has been found and characterized. Lattice parameters of (H2m5na)H2PO4 change...  相似文献   

4.
A tripodal tris(urea) ligand with 2,2'-bipyridyl (bpy) substituents (L) has been designed and synthesized, which coordinates with three equivalents of Ru(bpy)(2)Cl(2)·2H(2)O, followed by treatment with NH(4)PF(6), to afford the anion receptor [(bpy)(6)Ru(3)L](PF(6))(6) (1). The anion-binding behavior of the ligand L and the Ru(II)-bpy functionalized receptor 1 toward different anions was investigated by (1)H NMR (for L and 1), fluorescence, and UV-vis spectroscopy (for 1). Both compounds showed selective recognition of SO(4)(2-) or H(2)PO(4)(-) ions in the 1:1 binding mode in the NMR studies. The Ru(II) complex 1 displayed the metal-to-ligand charge transfer emission at 600 nm, which was quenched on addition of the sulfate and dihydrogen phosphate ions. Quantitative fluorescence titration experiments were carried out and the stability constants (log K) of the complex 1 with SO(4)(2-) and H(2)PO(4)(-) ions were obtained to be 4.73 and 4.69 M(-1) (1:1 binding mode), respectively.  相似文献   

5.
Electrophoretic mobilities of various synthetic and semisynthetic hydroxyapatites (Ca10(PO4)6(OH)2, HAP) suspended in aqueous solutions have been measured as a function of pH and calcium concentration. The studied powders differ in particle size, crystallinity degree and surface contamination (carbonate). When equilibrated in mineral acids or bases, a large plateau of negative mobility is observed in the pH range 5-8, with increasing negative values at higher pH. Only in the case of the sample composed of nanoparticles, positive mobility obtains at pH < 8.9. When Ca2+ is added, positive mobility values are observed for all samples, and a bell-shaped profile results as a function of pH. Two possible models are explored to describe the results: the Nernstian approach, which assumes solubility equilibrium and surface potentials determined by the three potential-determining ions (Ca2+, PO3-4, and OH-), and the surface complexation approach, based on the idea of negligible phase transfer of structural phosphate. The Nernstian model is inadequate, whereas a very simple surface complexation model based on the equations Ca5(PO4)+3 = Ca4(PO4)-3 + Ca2+,Ca4(PO4)-3 + H+ = Ca4(PO4)2(PO4H),Ca5(PO4)+3 + OH- = Ca5(PO4)3(OH),coupled with a very simple electrical double layer, model suffices to reproduce the bell-shaped profile of the mobility as a function of pH in the presence of added calcium salts. The results also show that the sample composed of nanoparticles exchanges ions more easily with the solution, without reaching the solubility equilibrium in the explored timespans. In the presence of soluble phosphate salts, it is postulated that the same surface ensembles define the surface charge, with participation of phosphate as described by the equation Ca5(PO4)+3 + PO3-4 = Ca4(PO4)-3.HAP is just one member of a family of calcium phosphates with different (Ca)/(P) ratios. Electrophoretic mobilities of another member, tricalcium diphosphate, Ca3(PO4)2, were also measured and shown to be described by the same basic model. Comparison with previous literature data shows that the negative plateau in the mobility is a general feature of many HAP samples at low Ca2+, again in agreement with the surface complexation model. FTIR data demonstrates that surface phosphate indeed undergoes protonation, as postulated in the model.  相似文献   

6.
Ingman F 《Talanta》1973,20(1):135-138
Two recent attempts to determine the dissociation constants of 3-aminomethylalizarin-N,N-diacetic acid are discussed and the results compared with values that can be predicted from earlier work on iminodiacetic acid derivatives and from the absorption spectra of the reagent at different pH values. Results of a potentiometric and spectrophotometric study to determine the stability constants of the various protonated species of the reagent in aqueous solution at ionic strengths 0.1 and 0.5 (potassium chloride) are: log K(H)(HL) = 12.1, log K(H)(H(2)L) = 9.81, log K(H)(H(3)L) = 5.47, log K(H)(H(4)L) = 2.54, and log K(H(2)L)(H(5)L(2)) = 2.2 at ionic strength 0.5.  相似文献   

7.
Three crystal structures of a ditopic cyclophane ligand (L) in which two 1,5,8,12-tetraamine molecules have been attached through methylene spacers to the ortho positions of a benzene ring are reported. The first one (1) corresponds to the tetraprotonated free macrocycle (H4L4+) having two tetrachlorozincate(II) counteranions (C24H54O2N8Cl8Zn2, a = 9.1890(2) A, b = 14.0120(3) A, c = 15.3180(3) A, alpha = 89.2320(7) degrees , beta = 82.0740(6) degrees , gamma = 83.017(1) degrees , Z = 2.00, triclinic, P); the second one (2) is of a binuclear Cu2+ complex having coordinated chloride anions and perchlorate counteranions (C24H58O14N8Cl4Cu2 a = 9.9380(2) A, b = 30.2470(6) A, c = 53.143(1) A, orthorhombic, F2dd, Z = 18), and the third one (3) corresponds to an analogous Zn2+ complex that has been crystallized using triflate as counteranion (C26H(51.2)O(6.6)N8Cl2F6S2Zn2 a = 8.472(5) A, b = 9.310(5), c = 13.745(5) A, alpha = 84.262(5) degrees , beta = 77.490(5) degrees , gamma = 73.557(5) degrees , triclinic, P, Z = 2). The analysis of the crystallographic data clearly shows that the conformation of the macrocycle and, in consequence, the overall architecture of the crystals are controlled by the anions present in the moiety, pi-pi-stacking associations, and hydrogen bonding interactions. The protonation and stability constants for the formation of the Cu2+ and Zn2+ complexes in aqueous solution have been determined potentiometrically in 0.15 mol dm(-3) NaClO4 at 298.1 K. Intramolecular hydrogen bonding defines the protonation behavior of the compound. Positive cooperativity is observed in the formation of the Cu2+ complexes.  相似文献   

8.
Photoinduced proton transfer reactions of harmane (1-methyl-9H-pyrido[3,4-b]indole) (HAR) in the presence of a proton donor/acceptor such as dihydrogen phosphate anions in aqueous solution have been studied by stationary and time-resolved fluorescence spectroscopy. The presence of high amounts of dihydrogen phosphate ions modifies the acid/base properties of this alkaloid. Thus, by keeping the pH constant at pH 8.8 and by increasing the amount of NaH(2)PO(4) in the solution, it is possible to reproduce the same spectral profiles as those obtained in high alkaline solutions (pH >12) in the absence of NaH(2)PO(4). Under these conditions, a new fluorescence profile appears at around 520 nm. This result could be related to the results of a recent investigation which suggests that a high intake of phosphates may promote skin tumorigenesis. The presence of β-cyclodextrin (β-CD) avoids the proton transfer reactions in this alkaloid by means the formation of an inclusion complex between β-CD and HAR. The formation of this complex originates a remarkable enhancement of the emission intensity from the neutral form in contrast to the cationic and zwitterionic forms. A new lifetime was obtained at 360 nm (2.5 ns), which was associated with the emission of this inclusion complex. At this wavelength, the fluorescence intensity decay of HAR can be described by a linear combination of two exponentials. From the ratio between the pre-exponential factors, we have obtained a value of K = 501 M for the equilibrium of formation of this complex.  相似文献   

9.
A comparative study of the binding of nitrate and sulfate with a polyammonium monocycle L(1), (3,6,9,17,20,23-hexaazatricyclo[23.3.1.1(11,15)]-triaconta-1(29),11,13,15(30),25,27-hexaene), and the corollary bicycle L(2), (1,4,12,15,18,26,31,39-octaazapentacyclo-[13.13.13.1(6,10).1(20,24).1(33,37)]-tetratetraconta-6,7,9,20(43),21,23,33(42),34,36-nonaene), is reported. Potentiometric studies indicated negligible binding for L(1) and nitrate, but high affinity was observed for sulfate (log K(H5L(SO4)/H5L-SO4) = 3.53(1), log K(H6L(SO4)/H6L-SO4) = 4.36(1)). Stronger binding was observed for the cryptand L(2) with both nitrate and sulfate (log K(H6L(NO3)/H6L-NO3) = 3.11(5), log K(H7L(NO3)/H7L-NO3) = 3.55(5); log K(H6L(SO4)/H6L-SO4) = 4.43(1), log K(H7L(SO4)/H7L-SO4) = 4.97(5)). Five crystal structures are reported: the nitrate (1) and sulfate (2) salts of L(1), the free base (3) of L(2), and the nitrate (4) and tosylate (5) salts of L(2). Structural results for L(1) indicate relatively planar monocycles with cis and trans orientations of the phenyl groups for 2 and 1, respectively, with the anions above and below the monocycle rings. For L(2), key features include an encapsulated water and intricate water network in 3, two encapsulated and four external nitrates and two external water molecules in 4, and six external tosylates with sulfonate groups pointing into the cavity and eight external waters in 5.  相似文献   

10.
A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).  相似文献   

11.
A series of iridium and rhodium pincer complexes have been synthesized and characterized: [(POCOP)Ir(H)(H(2))] [BAr(f)(4)] (1-H(3)), (POCOP)Rh(H(2)) (2-H(2)), [(PONOP)Ir(C(2)H(4))] [BAr(f)(4)] (3-C(2)H(4)), [(PONOP)Ir(H)(2))] [BAr(f)(4)] (3-H(2)), [(PONOP)Rh(C(2)H(4))] [BAr(f)(4)] (4-C(2)H(4)) and [(PONOP)Rh(H(2))] [BAr(f)(4)] (4-H(2)) (POCOP = κ(3)-C(6)H(3)-2,6-[OP(tBu)(2)](2); PONOP = 2,6-(tBu(2)PO)(2)C(5)H(3)N; BAr(f)(4) = tetrakis(3,5-trifluoromethylphenyl)borate). The nature of the dihydrogen-metal interaction was probed using NMR spectroscopic studies. Complexes 1-H(3), 2-H(2), and 4-H(2) retain the H-H bond and are classified as η(2)-dihydrogen adducts. In contrast, complex 3-H(2) is best described as a classical dihydride system. The presence of bound dihydrogen was determined using both T(1) and (1)J(HD) coupling values: T(1) = 14 ms, (1)J(HD) = 33 Hz for the dihydrogen ligand in 1-H(3), T(1)(min) = 23 ms, (1)J(HD) = 32 Hz for 2-H(2), T(1)(min) = 873 ms for 3-H(2), T(1)(min) = 33 ms, (1)J(HD) = 30.1 Hz for 4-H(2).  相似文献   

12.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

13.
Barker JE  Liu Y  Yee GT  Chen WZ  Wang G  Rivera VM  Ren T 《Inorganic chemistry》2006,45(19):7973-7980
A novel Cu(II)2 complex of the [18]ane-N6 macrocycle ([18]ane-N6 = 1,4,7,10,13,16-hexaazacyclooctadecane) was prepared from the reaction between [18]ane-N6 and Cu(II) salts such as Cu(NO3)2 and Cu(OAc)2. A structural study of the complex derived from Cu(OAc)2 (1) revealed a Cu(II)2 core encircled by a [18]ane-N6 ligand and two mu-O-OAc ligands. The facile replacement of mu-O-OAc by a phosphate monoester [PO3(OR)2-] yielded a number of bis(phosphate monoester)dicopper complexes with ROPO3(2-) as hydrogen phosphate (HPO4(2-), 3a), phenyl phosphate [PO3(OPh)2-, 3b], glycerol 2-phosphate [PO3(OCH(CH2OH)2)2-, 3c], alpha-d-gluocose phosphate [PO3(C6H11O6)2-, 3d], and dl-alpha-glycerol phosphate [PO3(OCH2CHOHCH2OH)2-, 3e]. Structural studies of compounds 3a-d confirmed both the retention of the Cu2{[18]ane-N6} core and a mu-O-PO3(OR) coordination mode. Displacement of acetate by a phosphate monoester in an aqueous solution was accompanied by a significant change in the visible absorption, which enables the establishment of relative association constants of PO3(OR)2- on the order of 10(4) in the unbuffered solution and 10(3) in the buffered solution (HEPES). Measurement of the magnetic susceptibility of compound 3a over the temperature range of 5-300 K and subsequent modeling revealed a weak antiferromagnetic coupling (J = -1.1 cm(-1)) between two Cu(II) centers.  相似文献   

14.
Three new amine-templated zinc phosphates, [C4N2H14][Zn(HPO4)2].H2O, AU-I, [C4N2H14][Zn2(H(0.5)PO4)2(H2PO4)], AU-II, and [C4N2H14][Zn5(H2O)(PO4)4], AU-III, are prepared by hydrothermal synthesis using an organic amine, N,N'-dimethylethylendiamine CH3NHCH2CH2NHCH3, as structure-directing agent. The three materials are prepared from the same reaction mixture, 1Zn(CH3CO2)2:3.05H3PO4:2.25CH3NHCH2CH2NHCH3:138H2O (pH = 5.1), AU-I at RT, AU-II at 60 degrees C, and AU-III at 170 degrees C. The materials are built from corner-sharing ZnO4 and PO4 tetrahedra forming chains, layers, or framework structures for AU-I to III, respectively, and are linked together by hydrogen bonds via the diprotonated amine ions. The complete hydrogen-bond scheme is resolved for these new compounds and reveals some interesting phenomena, for example, a hydrogen shared between two phosphate groups in AU-II, thereby forming H(0.5)PO4 groups. Furthermore, the water molecules are different; that is, in AU-I they act as hydrogen-bond donor and acceptor, whereas they act as ligand in AU-III with coordination to Zn. The structures of the compounds are determined by single-crystal X-ray diffraction analysis. AU-I, [C4N2H14][Zn(HPO4)2].H2O, crystallizes in the triclinic space group P-1, a = 8.215(2), b = 8.810(3), c = 8.861(3) A, alpha = 88.001(4) degrees , beta = 89.818(5) degrees , and gamma = 89.773(5) degrees , Z = 2. AU-II, [C4N2H14][Zn2(H(0.5)PO4)2(H2PO4)], is monoclinic, P2/n, a = 11.7877(4), b = 5.2093(2), c = 12.2031(4) A, beta = 98.198(1) degrees , Z = 2. AU-III, [C4N2H14][Zn5(H2O)(PO4)4], crystallizes in the orthorhombic space group Pna2(1) with lattice parameters, a = 20.723(2), b = 5.2095(6), c = 17.874(2) A, Z = 4. The phase stability investigated by systematic hydrothermal synthesis is presented, and the materials are further characterized by 31P solid-state MAS NMR, for example, by determination of 31P chemical shift anisotropies for AU-III, while the thermal behavior is investigated by thermogravimetry (TG).  相似文献   

15.
A potentiometric and spectrophotometric investigation on the formation of zinc(II) complexes with Semi-Xylenol Orange (SXO or H(4)L) is reported. In an aqueous solution (mu = 0.1), three 1:1 complex species, MH(2)L, MHL(-), ML(2-), and a 1:2 complex, ML(6-)(2), seem to exist. In a strongly alkaline medium (above pH 12.5) the complexes may dissociate to give zinc hydroxide and L(4-). The formation of a hydroxy complex is not observed. The absorption maxima are at 445 nm (MH(2)L), 466 nm (MHL(-)) and 561 nm (ML(2-)), the molar absorptivities being 2.34 x 10(4), 2.42 x 10(4) and 3.14 x 10(4) 1.mole(-1) .cm(-1) respectively. The formation constants are (at 25 +/- 0.1 degrees ) log K(M)(ML) = 11.84, log K(M)(MHL) = 7.13, log K(M)(MH(2)L) = 2.70, log K(M)(ML(2)) = 16.60.  相似文献   

16.
New ethylenediphosphonates of molybdenum, A[Mo2O5(O3PCH2CH2PO3)] (A = NH4 (1), Tl (2), Cs (3), Rb (4)), and K(H3O)[Mo2O5(O3PCH2CH2PO3)] (5), have been synthesized by a hydrothermal method and structurally characterized by X-ray diffraction, spectroscopic, and thermal studies. These compounds consist of pillared anionic layers [Mo2O5(O3PCH2CH2PO3)]2-, with A+, K+, and H3O+ ions in the interlayer region as well as in the cavities within the anionic layers. Single-crystal X-ray structures of compounds 1 and 5 have been determined. They crystallize in the orthorhombic space group Cmca with Z = 8 and have the following unit cell parameters. For 1, a = 25.60(1), b = 10.016(4), and c = 9.635(3) angstroms and for 5, a = 25.63(1), b = 10.007(2), and c = 9.512(1) angstroms.  相似文献   

17.
A layered oxo-vanadium(IV) dihydrogen phosphate, {VO(H2PO 4)2} n has been synthesized hydrothermally and characterized by several physicochemical methods. Single-crystal X-ray analysis (crystal system, tetragonal; space group, P4/ ncc; unit cell dimensions, a = b = 8.9632(4), c = 7.9768(32) A) of {VO(H2PO4) 2} n reveals that the compound has an extended two-dimensional structure. The VO2+ moieties are connected through bridging H 2PO4 (-) ions, and this type of connection propagates parallel to the crystallographic ab plane which gives rise to a layered structure. The layers are staked parallel to the crystallographic c axis with a separation between the layers of ca. 4.0 A. Magnetic susceptibility of {VO(H2PO4)2} n has been measured in the temperature range 2-300 K on a SQUID magnetometer. The magnetic property of {VO(H2PO4)2} n is explicable in the light of a two-dimensional quantum Heisenberg antiferromagnet model. Magnetic pathways are available through the dihydrogen-phosphato bridges within the layer and provide for weak antiferromagnetic interactions. Notably {VO(H2PO4)2} n catalyzes the epoxidation reaction of alkenes with tert-BuOOH in acetonitrile medium under heterogeneous condition.  相似文献   

18.
In order to recycle magnesium ammonium phosphate (MgNH4PO4.6H2O: MAP) obtained from MAP process, which is one of the attractive processes for removal of aqueous ammonium and phosphate from wastewater, ammonium elimination from MAP to magnesium phosphates and ammonium incorporation into the magnesium phosphates have been investigated in the present study. It is confirmed that magnesium hydrogen phosphate (MgHPO4) is favorably obtained from the ammonium elimination from MAP at temperatures greater than 353 K, although magnesium phosphate (Mg3(PO4)2) and magnesium pyrophosphate (Mg2P2O7) have been suggested as possible candidates. Based on the dissolution-precipitation mechanism for the removal of aqueous ammonium with magnesium phosphates, three magnesium phosphates were employed for the removal of aqueous ammonium. The order of the removal rate of the aqueous ammonium was MgHPO4>Mg3(PO4)2>Mg2P2O7, as expected from the solubility of those magnesium phosphates. The removability of the solid obtained from ammonium elimination of MAP is also confirmed. The present results show that MAP can be employed as an advanced material for the removal/recovery of ammonium, although it is generally accepted that an excess of MAP obtained from the wastewater treatment can be only used as a slow-acting fertilizer.  相似文献   

19.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

20.
We have found the first well-characterized coordination of guanidine with Zn(2+) in a 1:1 complex (ZnL(1)) with cyclen (= 1,4,7,10-tetraazacyclododecane) functionalized with guanidinylethyl group (L(1) = (2-guanidinyl)ethyl-cyclen). The X-ray structure analysis of the 1:1 complex crystallized at pH 7.5 revealed an apical coordination of the pendant guanidinyl group to Zn(2+) ion in ZnL(1). By potentiometrtic pH titration, initial formation of a 1:1 Zn(L(1).H(+)) complex was indicated, where only the cyclen N's bind to Zn(2+) with the complexation constant, log K(s) (K(s) = [Zn(L(1).H(+))]/[Zn(2+)][L(1).H(+)] (M(-1))), being 12.4 +/- 0.1. Facile deprotonation of the guanidinium pendant in the Zn(L(1).H(+)) occurred with a pK(a) value of 5.9 +/- 0.1 at 25 degrees C with I = 0.1 (NaNO(3)) to yield the guanidine-coordinating complex ZnL(1). 4-Nitrophenyl phosphate dianion (NPP(2-)) interacted with ZnL(1) through a new Zn(2+)-phosphate coordination, as indicated by (31)P NMR titration and potentiometric pH titration. An apparent complexation constant for this new species, log K(app)(Zn(L(1).H(+))-NPP), was 4.0 +/- 0.1, which is larger than the log K(app)(ZnL(2)-NPP) value of 3.1 for the 1:1 complex of Zn(2+)-cyclen (ZnL(2)) with NPP at the common pH 5.6. The interaction of ZnL(1) with a phosphate dianion was proven by the X-ray crystal structure analysis of the 1:1 ZnL(1)-PP(2-) complex (PP(2-) is a dianion of phenyl phosphate) obtained from an aqueous solution at pH 6.5. At higher pH, the pendant guanidinium cation is deprotonated to displace the phosphate to yield the Zn(2+)-guanidine bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号