首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter- and intramolecular hydrogen bonding of an N-H group in pyrazole complexes was studied using ligands with two different groups at pyrazole C-3 and C-5. At C-5, groups such as methyl, i-propyl, phenyl, or tert-butyl were present. At C-3, side chains L-CH(2)- and L-CH(2)CH(2)- (L = thioether or phosphine) ensured formation of chelates to a cis-dichloropalladium(II) fragment through side-chain atom L and the pyrazole nitrogen closest to the side chain. The significance of the ligands is that by placing a ligating side chain on a ring carbon (C-3), rather than on a ring nitrogen, the ring nitrogen not bound to the metal and its attached proton are available for hydrogen bonding. As desired, seven chelate complexes examined by X-ray diffraction all showed intramolecular hydrogen bonding between the pyrazole N-H and a chloride ligand in the cis position. In addition, however, intermolecular hydrogen bonding could be controlled by the substituent at C-5: complexes with either a methyl at C-5 or no substituent there showed significant intermolecular hydrogen bonding interactions, which were completely avoided by placing a tert-butyl group at C-5. The acidity of two complexes in acetonitrile solutions was estimated to be closer to that of pyridinium ion than those of imidazolium or triethylammonium ions.  相似文献   

2.
The synthesis and characterization of novel ruthenium(IV) complexes [Ru(η(3):η(3)-C(10)H(16))Cl(2)L] [L = 3-methylpyrazole (2b), 3,5-dimethylpyrazole (2c), 3-methyl-5-phenylpyrazole (2d), 2-(1H-pyrazol-5-yl)phenol (2e), 6-azauracile (3), and 1H-indazol-3-ol (4)] are reported. Complex 2e is converted to the chelated complex [Ru(η(3):η(3)-C(10)H(16))Cl(κ(2)-N,O-2-(1H-pyrazol-3-yl)phenoxy)] (5) by treatment with an excess of NaOH. All of the ligands feature N-H, O-H, or C═O as the potential hydrogen-bonding group. The structures of complexes 2a-2c, 2e, 3, and 5 in the solid state have been determined by X-ray diffraction. Complexes 2a-2c and 3, which contain the pyrazole N-H group, exhibit intra- and intermolecular hydrogen bonds with chloride ligands [N-H···Cl distances (?): intramolecular, 2.30-2.78; intermolecular, 2.59-2.77]. Complexes 2e and 3 bearing respectively O-H and C═O groups also feature N-H···O interactions [intramolecular (2e), 2.27 ?; intermolecular (3), 2.00 ?]. Chelated complex 5, lacking the O-H group, only shows an intramolecular N-H···Cl hydrogen bonding of 2.42 ?. The structure of complex 3, which turns out to be a dimer in the solid state through a double intermolecular N-H···O hydrogen bonding, has also been investigated in solution (CD(2)Cl(2)) by NMR diffusion studies. Diffusion-ordered spectroscopy experiments reveal an equilibrium between monomer and dimer species in solution whose extension depends on the temperature, concentration, and coordinating properties of the solvent. Preliminary catalytic studies show that complex 3 is highly active in the redox isomerization of the allylic alcohols in an aqueous medium under very mild reaction conditions (35 °C) and in the absence of a base.  相似文献   

3.
Cationic palladium(II) and platinum(II) complexes with chelate ylides and neutral ligands of the type, [MCl (Y) (L)]+BPh4? (M  Pd or Pt; Y  bdep or bdmp*; L = 4-methylpyridine, 3,5-dimethylpyrazole, PPh3, PCy3, PMePh2, P(OMe)3, AsPh3 or SbPh3) and [M(bdep) (4-methylpyridine)2] (BPh4)2 (M = Pd or Pt) were prepared and characterized by means of infrared and 1H NMR spectra.  相似文献   

4.
Palladium and nickel complexes with tetrabenzoporphine were synthesized by reacting tetrabenzoporphine and cadmium tetrabensoporphine with palladium and nickel chlorides in boiling dimethylformamide and identified.  相似文献   

5.
The first examples of reactivity at the backbone of a bidentate PN-ligand L1H relevant to N-H activation are described, leading to novel Pd(II) and Cu(I) amido complexes. Activation of the PN-ligand backbone led to selective dearomatization of the pyridyl ring structure. In the case of Pd(II), the intermediate could be efficiently stabilized using PMe(3). Selective N-H bond cleavage of e.g. trifluorosulfonylamide resulted in facile formation of mononuclear metal-amido species 2 and 4, which have been crystallographically characterized. Hydrogen-bonding dimerization is observed in these solid state structures. The results obtained with these structurally versatile and reactive scaffolds likely open up new avenues in cooperative catalysis.  相似文献   

6.
The synthesis and characterization of ferrocenylimidazole complexes of platinum(II) and palladium(II) are described. Reaction of ferrocenylimidazoles with K2MCl4 (M = Pd, Pt) using a biphasic system of dichloromethane and ethanol/water provided the corresponding complexes 2a–2j in good yields. New synthetic routes for the synthesis of ferrocenylbenzylethers 2k–2o, bis(4-ferrocenylbenzyl)carbonate [2p] and 4-ferrocenylbenzylacetate [2q] are also described. These products were obtained by the reaction of 4-ferrocenylbenzyl-1H-imidazole-carboxylate and K2PtCl4 under various conditions. Compounds 2k–2o were also obtained by alternative routes which do not involve the use of a platinum salt. The crystal structures of 2b, 2q and plausible mechanisms for the formation of 2k, 2p and 2q are reported.  相似文献   

7.
New acyclic aminophosphites (RO)2POCH2CH2NMe2 (PN) (R=Et, Pri, or adamantyl) characterized by various steric requirements of the phosphorus center were synthesized. The reactions of the aminophosphites with Pd(COD)Cl2 (COD is 1,5-cyclooctadiene) and [Rh(CO)2Cl]2 afforded the stable chelate mononuclear complexes PdCl2(PN) and RhClCO(PN), respectively. The structures of the resulting compounds were established by1H,13C, and31P NMR and IR spectroscopy, X-ray diffraction analysis, laser and plasma desorption mass spectrometry, X-ray photoelectron spectroscopy, and sedimentation analysis.  相似文献   

8.
Four dithiooxalato (Dto) bridged one-dimensional Ni(ll) and Ni(ll)Cu(ll) complexes (Me6[14]dieneN4)Ni2(Dto)2) (1), (Me6[14]dieneN4)CuNi(Dto)2 (2), (Me6[14]aneN4)Ni2(Dto)2 (3), and (Me6[14]aneN4)CuNi(Dto)2 (4), were synthesized. These complexes have been characterized by elemental analysis, IR, UV and ESR spectra. The crystal structure of complex3 was determined. It crystallizes in the monoclinic system, space group C2/c with a = 2. 2425(4) nm,b = 1.0088(2) nm,c= 1.4665(3) nm, β= 125.32(3)δ Z = 4;R = 0.076, Rw = 0.079. In the complex, Ni(1) coordinates four sulphur atoms of two Dto ligands in plane square environment. Ni(2) lies in the center of macrocyclic ligand. For Dto ligand, two sulphur atoms coordinate Ni(1), and O(1) coordinates Ni(2) and forms weak coordination bond. O(2) is linked to N(2) of macrocyclic ligand through hydrogen bond.  相似文献   

9.
In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands. The relatively large static first hyperpolarizabilities, beta(0), increase markedly on moving from aqueous to methanol solutions, accompanied by large red-shifts in the MLCT transitions. Acidification of aqueous solutions allows reversible switching of the linear and NLO properties, as shown via both HRS and Stark experiments. Time-dependent density functional theory and finite field calculations using a polarizable continuum model yield relatively good agreement with the experimental results and confirm the large decrease in beta(0) on protonation. The Stark-derived beta(0) values are generally larger for related {Ru(II)(NH(3))(5)}(2+) complexes than for their {Fe(II)(CN)(5)}(3)(-) analogues, consistent with the HRS data in water. However, the HRS data in methanol show that the stronger solvatochromism of the Fe(II) complexes causes their NLO responses to surpass those of their Ru(II) counterparts upon changing the solvent medium.  相似文献   

10.
Four organometallic palladium(IV) complexes: Cl2(C6F5)2Pd(LL) (LL being a bidentate nitrogen-donor ligand) have been prepared by the oxidative addition of chlorine to the corresponding bis(pentafluorophenyl)palladium(II) complexes, (C6F5)2Pd(LL). Some of their properties are described.  相似文献   

11.
Bis(imino)pyridine palladium(II) complexes 3-6 were synthesized by two different methods. The structure of complexes 3 and 4 has been confirmed by X-ray structure analysis. The catalytic studies show that bis(imino)pyridine palladium(II) complexes are highly efficient catalysts in the Suzuki-Miyaura reaction and the complex 4 was used to catalyze the synthesis of fluorinated liquid crystalline compounds via Suzuki coupling reaction.  相似文献   

12.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

13.
A series of complexes, [M(bpy)(SAr)2] (M = platinum(II) or palladium(II), bpy = 2,2'-bipyridine, SAr = 2- or 4-(acylamino)benzenethiolate, or 2-(alkylcarbamoyl)benzenethiolate), were synthesized and characterized on the basis of 1H NMR, IR, and electrochemical properties. The structures of [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) and [Pt(bpy)(S-2-t-BuNHCOC6H4)2] (3) were determined by X-ray analysis. The complexes have intramolecular NH...S hydrogen bonds between the amide NH group and the sulfur atom. A weak NH...S hydrogen bond in these complexes and [Pd(bpy)(S-2-Ph3CCONHC6H4)2] (4) is detected from the 1H NMR spectra and the IR spectra in chloroform and in the solid state. [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) exhibits a remarkably high-energy-shifted lowest-energy band in UV-visible spectra and has a positively shifted oxidation potential. The blue-shift of 42 nm and the positive shift of +0.24 V, as compared to those of [Pt(bpy)(SC6H5)2), are due to the effect of the NH...S hydrogen bond.  相似文献   

14.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

15.
The substituted pyrazole palladium complexes, (3,5-tBu2pz)2PdCl2 (1) (3,5-Me2pz)2PdCl2 (2), (3-Mepz)2PdCl2 (3) and (pz)2PdCl2 (4) (pzH=pyrazole), can be prepared from the reaction of (COD)PdCl2 with the appropriate pyrazole. The chloromethyl derivative, (3,5-tBu2pz)2PdCl(Me) (5), was prepared from (COD)PdClMe and tBu2pzH. X-ray crystal structure determination of 1 and 5 established their structures in the solid state to be the trans-isomer. After activation of 1-4 and 5 with methylaluminoxane (MAO) the resulting palladium complexes were used as catalysts in ethylene polymerization, yielding linear high-density polyethylene (HDPE). The highest activity was observed for (3,5-tBu2pz)PdClMe.  相似文献   

16.
The reactions of N-(2(diphenylphosphino) benzylidene) (phenyl) methanamine, Ph2PPhNHCH2-C5H4N, 1 and N-(2-(diphenylphosphino) (benzylidene) (thiophen-2-yl) methanamine, Ph2PPhNHCH2-C4H3S, 2 with MCl2(cod) and MCl(cod)Me (M = Pd, Pt; cod = 1,5-cyclooctadiene) yield the new complexes [M(Ph2PPhNHCH2-C5H4N)Cl2], M = Pd1a, Pt1b, [M(Ph2PPhNHCH2-C5H4N)ClMe], M = Pd1c, Pt 1d, [M(Ph2PPhNHCH2-C4H3S)Cl2], M = Pd2a, Pt 2b, and [M(Ph2PPhNHCH2-C4H3S)ClMe], M = Pd2c, Pt 2d, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P-, 1H-NMR, IR spectroscopy, electro spray ionization-mass spectrometry (ESI-MS) and elemental analysis. The representative solid-state molecular structures of the platinum complexes 1b and 2b were determined using single crystal X-ray diffraction analysis and revealed that the complexes exhibit a slightly distorted square-planar geometry. Furthermore, the palladium complexes were tested as potential catalysts in the Heck and Suzuki cross-coupling reactions.  相似文献   

17.
18.
19.
Nickel(II) dithiocarbamate and dithiophosphinate complexes were studied by X-ray and X-ray photoelectron spectroscopy. The X-ray emission and absorption spectra of Ni(II) compounds were interpreted in terms of quantum-chemical model calculations of the electronic spectrum of the complexes. The electronic structure of nickel(II) dithiolates was analyzed on the basis of the experimental and theoretical data.  相似文献   

20.
The oxidative addition reactions of a bulky hexathioether containing a disulfide bond, TbtS(o-phen)S(o-phen)SS(o-phen)S(o-phen)STbt (1) (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl, o-phen = o-phenylene), to a palladium(0) complex were studied. In the reaction of 1 with 3 molar amounts of [Pd(PPh3)4], a trinuclear palladium(II) complex, [Pd3{S(o-phen)S}2{(o-phen)STbt}2(PPh3)2] (2), was formed via three-step palladium insertion reaction including unusual C(aryl)-S bond cleavages. On the other hand, the reaction of 1 with an equimolar amount of [Pd(PPh3)4] afforded mononuclear palladium(II) complex having a pseudo-octahedral structure, [Pd{S(o-phen)S(o-phen)STbt}2] (3). The hexa-coordinated geometry for the palladium center in 3 was confirmed by the atoms in molecule (AIM) analysis, which revealed the presence of the bond critical points between the central Pd atom and the S atoms at the axial positions. In contrast to the bulky system, the reaction of Ph-substituted hexathioether, PhS(o-phen)S(o-phen)SS(o-phen)S(o-phen)SPh (4), with an equimolar amount of [Pd(PPh3)4] gave a palladium(II) complex having square-planar structure, [Pd{S(o-phen)S(o-phen)SPh}2] (5). Theoretical calculations revealed that there is no remarkable difference among the energies of isomers of [Pd{S(o-phen)SPh}2], 6a-syn, 6a-anti, 6b-syn, and 6b-anti. This result suggests that a reason for the preference of the trans-anti-conformation in 3 is the steric repulsion between the bulky Tbt groups, and that of the cis-syn-conformations in 5 and 6 is the intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号