首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics and mechanism of the adduct formation of two Co(II) tetraaza complexes, [Co(ampen)] {[(N,N′‐ethylenebis‐(o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)]} and [Co(campen)] {[(N,N′‐ethylenebis‐(5‐chloro‐o‐amino‐α‐phenylbenzylideneiminato)cobalt(II)]}, with four organic bases, 4‐nitro imidazole (4‐NO2Imid), 4‐methyl imidazole (4‐MeImid), imidazole (Imid), and 1‐methyl imidazole (1‐MeImid), in DMF were studied spectrophotometrically. The kinetic parameters and the second‐order k2 rate constants show the following nucleophilicity trend of the bases toward the given substrate: 4‐NO2Imid > 4‐MeImid > Imid > 1‐MeImid. The linear plots of kobs vs. the molar concentration of the base, the high span of k2 values, and the large negative values of ΔS suggest an associative (A) mechanism. © 2007 Wiley Periodicals, Inc. 39: 137–144, 2007  相似文献   

2.
Ozutsumi K  Taguchi Y  Kawashima T 《Talanta》1995,42(4):535-541
The complexation of urea (ur) with manganese(II), nickel(II) and zinc(II) ions has been studied by titration calorimetry in N,N-dimethylformamide (DMF) containing 0.4M (C(2)H(5))(4) NBF(4) as a constant ionic medium at 25 degrees C. The calorimetric data were well explained in terms of the formation of [Mn(ur)](2+), [Mn(ur)(2)](2+) and [Mn(ur)(4)](2+) for manganese(II), [Ni(ur)](2+) for nickel(II) and [Zn(ur)](2+) and [Zn(ur)(2)](2+) for zinc(II), and their formation constants, reaction enthalpies and entropies were determined. The complexation of the nickel(II)-urea system in DMF has also been studied by means of spectrophotometric titration and electronic spectra of individual nickel(II) complexes were determined. On the basis of the stepwise thermodynamic quantities and the individual electronic spectra of the complexes, it is revealed that the [Mn(ur)](2+), [Mn(ur)(2)](2+), [Ni(ur)](2+), [Zn(ur)](2+) and [Zn(ur)(2)](2+) complexes have a six-coordinate octahedral structure, while the [Mn(ur)(4)](2+) complex has a four-coordinate tetrahedral structure.  相似文献   

3.
Isotopic exchange behaviour of bis(diethyldithio carbamate) nickel(II) complex with nickel(II) in chloroform and methanol medium was studied. The studies were carried out at different temperatures varying the concentration of both metal ion and the complex. The results show that the complex is labile in the kinetic sense. Increase in temperature increases the isotopic exchange rate. The increase in concentration also results in enhancement of the rate of reaction.  相似文献   

4.
Isotopic exchange behaviour of bis(resacetophenone oxime) nickel(II) complex with nickel(II) in tri-n-butyl phosphate (TBP) and ethanol medium has been studied. The studies were carried out at different temperatures by varying the concentrations of both metal ion and the complex. Experimental observations showed that the complex is kinetically labile. Increase in temperature increases the isotopic exchange rate. Increase in concentration of either metal ion or complex results in significant increase of the reaction rate.  相似文献   

5.
Summary In NH4NO3+NH4OH buffered 10% (v/v) dioxan-water media (pH 7.0–8.5), thePseudo-first-order rate constant for the formation of the title complexes M(baen),i.e. ML, conforms to the equation 1/kobs=1/k+1/(kKo.s · TL), where TL stands for the total ligand concentration in the solution, Ko.s is the equilibrium constant for the formation of an intermediate outer sphere complex and k is the rate constant for the formation of the complex ML from the intermediate. Under the experimental conditions the free ligand (pKa>14) exists virtually exclusively in the undissociated form (baenH2 or LH2) which is present mostly as a keto-amine in the internally hydrogen-bonded state. Although the observed formation-rate ratio kCu/kNi is of the order of 105, as expected for systems having normal behaviour, the individual rate constants are very low (at 25°C, kCu=50 s–1 and kNi=4.7×10–4s–1) due to the highly negative S values (–84.2±3.3 JK–1M–1 for CuL and –105.8±4.1 JK–1M–1 for NiL); the much slower rate of formation of the nickel(II) complex is due to higher H value (41.2±1.0 kJM–1 for CuL and 78.2±1.2 kJM–1 for NiL) and more negative S value compared to that of CuL. The Ko.s values are much higher than expected for simple outer-sphere association between [M(H2O)6] and LH2 and may be due to hydrogen bonding interaction.In acid media ([H+], 0.01–0.04 M) these complexes M(baen) dissociate very rapidly into the [M(H2O)6]2+ species and baenH2, followed by a much slower hydrolytic cleavage of the ligand into its components,viz. acetylacetone and ethylenediamine (protonated). For the dissociation of the complexes kobs=k1[H+]+k2[H+]2. The reactions have been studied in 10% (v/v) dioxan-water media and also ethanolwater media of varying ethanol content (10–25% v/v) and the results are in conformity with a solvent-assisted dissociativeinterchange mechanism involving the protonated complexes.  相似文献   

6.
Isotope exchange behavior of bis-resacetophenone phenylhydrazone) nickel(II) complex with nickel(II) in tri-n-butyl phosphate and methanol medium has been studied. The studies were carried out at different temperatures varying the concentration of both metal ion and the complex. The results show that the complex is labile in the kinetic sense. Increase in temperature increases the isotope exchange rate. The increase in concentration also results in an enhancement of the rate of reaction.  相似文献   

7.
The stepwise complexation kinetics of Cu2+ with three tetratopic ligands L1, L2 and L3, tren-centred macrocycles with different bridges connecting the 14-membered macrocycles with the tren unit, have been measured by stopped-flow photodiode array techniques at 25 degrees C, I= 0.5 M (KNO3), and pH = 4.96. The reaction between the first Cu2+ and the ligand consists of several steps. In a rapid reaction Cu2+ first binds to the flexible and more reactive tren-unit. In this intermediate a translocation from the tren unit to the macrocyclic ring, which forms the thermodynamic more stable complex, takes place. This species can react further with a second Cu2+ to give a heterotopic dinuclear species with one Cu2+ bound by the tren-unit and the other coordinated by the macrocycle. A further translocation occurs to give the homoditopic species with two Cu2+ in the macrocycles. Finally a slow rearrangement of the dinuclear complex gives the final species. The rates of the translocation are dependent on the length and rigidity of the bridge, whereas the complexation rates with the tren unit are little affected by it. VIS spectra of the species obtained by fitting the kinetic results, EPR-spectra taken during the reaction, and ES mass spectra of the products confirm the proposed mechanism. The addition of a second, third and fourth equivalent of Cu2+ proceeds in an analogous way, but is complicated by the fact that we start and end with a mixture of species. These steps were evaluated in a qualitative way only.  相似文献   

8.
Dinickel(II) complexes of the ligands N,N'-di-p-anisylformamidinate (DAniF) and N,N',N'-triphenylguanidinate (TPG) have been synthesized and crystallographically characterized, along with their one-electron-oxidized analogues. In both systems, the Ni-Ni distances become shorter by approximately 0.1 A upon oxidation, in accord with the proposal that the resulting Ni2(5+) complexes are appropriately described as having one electron removed from a metal-based sigma orbital and an overall Ni-Ni bond order of 1/2. Although conventional DFT calculations on the model compounds Ni2(HNCHNH)4 and [Ni2(HNCHNH)4]+ appear to predict that the lowest energy state of the latter species would have one unpaired electron in an essentially ligand-based orbital. A single-point calculation of Ni2(DAniF)4 employing the geometry of its crystal structure with the full ligand included reveals a reversal of the previously predicted order of the HOMO and HOMO-1, and suggests that the unpaired electron in [Ni2(DAniF)4]+ is in a metal-based orbital of sigma symmetry. This is verified by the axial EPR spectrum of the compound in solution. The compound Ni2(DAniF)4 shows an unexpectedly rich cyclic voltammogram with four stepwise reversible oxidation waves. Coulometric experiments show that the doubly oxidized species has a significant lifetime at -25 degrees C, and by spectroelectrochemistry, its UV-vis spectrum was recorded. We propose that this species contains a Ni2(6+) core with a single Ni-Ni sigma bond.  相似文献   

9.
The preparation, crystal structures, magnetic properties and electrochemistry of novel linear hexanuclear nickel string complexes (Ni6(12+)) and their corresponding 1-e(-) reduction products (Ni6(11+)) are reported. In these complexes, the hexanickel chain is in a symmetrical arrangement (approximately D(4) symmetry) and is helically supported by four bpyany(2-) ligands [bpyany(2-) = the dianion of 2,7-bis(alpha-pyridylamino)-1,8-naphthyridine]. The Ni6(12+) complexes show that the two terminal nickel ions have high-spin states (S = 1) and the four inner ones have low-spin states (S = 0). The two terminal nickel ions exhibit weak antiferromagnetic coupling of ca.-5 cm(-1). All of Ni6(12+) complexes display three reversible redox couples at about -0.70, -0.20 and +1.10 V (vs. Ag/AgCl). The first reduction wave at about -0.20 V suggests facility of 1-e(-) reduction for the Ni(6)(12+) compounds. The reaction of Ni(6)(12+) complexes with hydrazine afforded the 1-e(-) reduction products (Ni6(11+)). As far as we are aware, the shortest bond distance of 2.202 A with a partial metal-metal bond was observed in Ni6(11+) compounds. The magnetic results of these Ni6(11+) compounds are in agreement with a localized model, in which the two terminal nickel ions are in a spin state of S = 1 whereas the central Ni3-Ni4 pair in a spin state of S = 1/2. The N6(11+) compounds show relatively strong antiferromagnetic coupling of about 60 cm(-1) between the terminal and the central dinickel ions.  相似文献   

10.
Summary The kinetics of formation and dissociation of the binuclear complex of Be2+ with 3-nitrosalicylatopentaamminecobalt(III) have been investigated in the 20–40 and 25–40 °C ranges (I = 0.3 mol dm –3), respectively. At 25 °C the rate and activation parameters for the formation of the binuclear species are: k f = 26.9 × 102 dm3mol–1s–1, H = 104 ± 7kJ mol–1 S = 91 ± 22JK–1mor–1.The rate constant, activation enthalpy and activation entropy for the acid-catalysed dissociation of the binuclear species are: 1.25 ± 0.08dm3mol –1 at 25 °C, 53 ± 3kJ mol–1 and - 67 ± 9 J K –1 mol–1, respectively. The formation of the binuclear species is chelation controlled while the dechelation is acid catalysed.  相似文献   

11.
12.
Summary The kinetics of formation of square-planar CuII and NiII complexes of the quadridentate ligand, ethylenebisbiguanide, have been studied spectrophotometrically in aqueous HOAc–NaOAc buffer, at ionic strength 0.2 mol dm–3, in the 25–35°C temperature range. The observed rate constants for the formation reactions are independent of pH (and of OAc concentration) in the pH range used (3.6–4.8 for CuII and 5.0–5.8 for NiII) where the product complexes form stoichiometrically, but show first-order dependence on the ligand concentration;i.e. kobs=kf[L]total. At 25°C kf values (dm3 mol–1s–1) are 35.2±0.4 for CuII and (8.4±0.1)×10–3 for NiII. The mechanism of the reactions is discussed.  相似文献   

13.
The kinetics and mechanism of the removal of M2+ from bis-(heptane-2,4,6-trionato)M(II) [M = Ni, Co] by ethylenediminetetraacetic acid (EDTA), nitrilotriacetic acid (NAT), 1,2-cyclohexanediamine-N, N, N′, N′-tetraacetic acid (CyDTA), and ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) have been investigated using stopped-flow spectrophotometry in methanol-water at 25°C and ionic strength 0.1 mol dm?3 KNO3. The reactions were investigated at a number of different pHs. An associative mechanism is proposed to account for the kinetic data. Although all the ligands have similar functional groups, their reactivity towards the parent complex is quite different. The pH dependence of the rate constants has been used to determine the relative reactivities of the various ligand species present. In the case of nitrilotriacetic acid, a nonlinear dependence on ligand concentration is observed, thus confirming the mechanism proposed. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
This contribution presents a selection of results obtained using spectrophotometric and potentiometric titrations. For several reasons, the investigated equilibria present particular challenges to traditional analysis techniques. Equilibrium constants and UV–vis absorption spectra for different ligands in the complexation process of Ni(II) with pyridoxamine (pm), pyridoxal (pl) and pyridoxine are reported. The gradual and cumulative stability constants occurring in aqueous solution are presented for all complexes studied. Additionally, crystal-field parameters were calculated for two nickel(II) complexes synthesized, [Ni(pm)2]Cl2 and [Ni(pl)2]Cl2, respectively. The minimum inhibitory concentration and minimal bactericidal/fungicidal concentration values for Ni(II) complexes studied were obtained at 25 °C for 24–48 h. The activity data show that the complexes are more potent antimicrobials than the parent ligands.  相似文献   

15.
Investigations on precipitation of metal hexacyanocobaltates from mixed solvent media have confirmed the earlier interpretation of the mechanism and provided further insight into it.  相似文献   

16.
二氯化六氨合镍(Ⅱ)配合物的脱氨反应动力学机理   总被引:2,自引:0,他引:2  
二氯化六氨合镍(Ⅱ)配合物的脱氨反应动力学机理;二氯化六氨合镍(Ⅱ);脱氨动力学;热分析;非等温法  相似文献   

17.
18.
《Analytica chimica acta》2002,459(2):229-234
The ligand 1,4,8-tri(n-octyl)-1,4,8,11-tetraazacyclotetradecane (L1) containing pendant octyl groups has been synthesised. L1 is a tetraazamacrocycle derived from the well-known cyclam unit, and the Ni2+ and Co2+ complexes, [Ni(L1)]2+ and [Co(L1)]2+, have been isolated and characterised. The ability of the nickel(II) and cobalt(II) complexes to act as anion receptors has been studied by using them as ionophores in membrane-based ion-selective electrodes (ISEs). The PVC membrane containing the complex [Ni(L1)]2+ and 2-nitrophenyloctylether as plasticizer shows a Nernstian response against iodide in a concentration range from 1×10−1 to 4×10−5 M I with a detection limit of 1.6×10−5 M I and a slope of 58.6 mV/pI at pH 7 (25 °C). In comparison, the electrode containing [Co(L1)]2+ as ionophore gave a sub-Nernstian slope and a low lifetime. A comparison between the iodide-selective electrode containing [Ni(L1)]2+ and other reported iodide-selective electrodes is also reported.  相似文献   

19.
A strictly two-coordinate nickel(II) bis(amido) complex has been prepared and its reactivity towards a variety of small molecules is described. Ni[N(SiMe(3))(DIPP)](2) reacts with DMAP and acetonitrile to form T-shaped three-coordinate complexes, and preliminary results show that Ni[N(SiMe(3))(DIPP)](2) is a catalyst for the hydrosilation of olefins with secondary silanes at ambient temperature.  相似文献   

20.
The crystal and molecular structure of dilapacholateaqua(dimethylformamide)nickel(II) was determined by X-ray diffraction. It crystallizes in the triclinic space group P 1 with a = 9.8671(9) Å, b = 10.654(1) Å, c = 15.289(2) Å, α = 86.98(1)°, β = 79.32(1)°, γ = 87.031(8)°, and Z = two molecules per unit cell. The structure was solved from 5094 reflections with I>2σ(I) and refined by full matrix least-square to an agreement R 1-factor of 0.0564. The nickel(II) is in a NiO6 octahedral environment, cis coordinated to two lapacholate anions through their adjacent carbonyl [Ni–O distances of 2.075(2) and 2.066(2) Å], and phenyl oxygens [Ni–O lengths of 2.011(2) and 2.021(2) Å], and to a water [d(Ni–Ow) = 2.073(2) Å] and a DMF [d(Ni–O) = 2.076(2) Å] at axial positions. Some physicochemical and spectroscopic properties of the complex are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号